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This article proposes an attack intent inference framework for
defending against hypersonic glide vehicles (HGVs). Predicting the
HGY behaviors poses significant challenges for defense systems due
to their highly dynamic and erratic maneuvers. Complementing the
limitations of the dynamics model, a unified dynamics and decision-
making model of HGYV is developed. First, dynamically feasible attack
regions can be set by the dynamics model. Within this region, the
decision-making model encodes the rational intent of attack, strate-
gically selecting the target that maximally attains the threat value.
To further address the dynamical uncertainties and potential discrep-
ancies from the rational decision-making model, a proximity param-
eter is introduced in light of the maximum entropy principle. The
attack intent of the HGV is then inferred by the Bayesian approach,
whereby recursively updates the probability of the potential target
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to be attacked. Numerical simulations demonstrate that the proposed
framework achieves superior accuracy and faster convergence in in-
tent inference compared to existing methods, under different scenarios
with varying uncertainty levels.

[. INTRODUCTION

INrecent years, hypersonic glide vehicles (HGVs) have
gained increasing attention in modern warfare due to their
extreme speed and highly agile maneuverability [1]. Un-
like traditional ballistic missiles that follow foreseeable
parabolic trajectories, HGVs exhibit erratic maneuvers,
mixing longitudinal skipping and lateral weaving. These
maneuvers complicate predictions of the HGV trajectory,
ultimately impeding effective defense strategies [2]. For
military defense systems, accurate prediction of the HGV
behaviors is essential not only for successful interception
but also for the optimal allocation of defense weapon
resources.

Seeking to predict the HGV behaviors and further antici-
pate its target, the existing research can be divided into three
main categories [3]: 1) physics-based prediction; 2) maneu-
ver mode identification; and 3) intent inference. Physics-
based approaches are principled by the aerodynamics and
kinematic model of HGVs, often utilizing classical filtering
techniques, such as the Kalman filter (KF) [4], [5], [6].
From the defender’s standpoint, however, the specific dy-
namics models and guidance laws of the observed HGV re-
main uncertain, making its trajectory prediction inherently
challenging. To address these limitations, some methods
have employed parametric representations of the dynamics
model, iteratively estimating unknown parameters in real
time [7]. Nonetheless, physics-based approaches may suffer
from significant long-term errors when confronted with
sudden maneuvers, sometimes misestimating in the order
of hundreds of kilometers [8].

Physics-based prediction can be augmented by maneu-
ver mode identification, which focuses on recognizing the
distinct flight maneuvers of HGVs. Longitudinal maneuvers
typically include equilibrium glide and skip glide, while lat-
eral maneuvers encompass weaving and turning [9]. Various
curve-fitting techniques have been employed to distinctly
model the individual maneuver dynamics from trajectory
data [10], [11]. Still, the resulting models for individual
maneuver modes are often insufficient to capture the non-
linearity and high dimensionality of the HGV flight data. To
address the limit of model-based approaches, recent studies
have resorted to data-driven approaches, such as long short-
term memory networks [12]. These methods capture tempo-
ral dependencies and nonlinear relationships, enabling more
effective classification of maneuver modes [13], [14], [15].
As such, the data-driven approaches excel in short-term pre-
dictions by specifying individual maneuver characteristics.
However, when it goes with long-term, unexpected transi-
tions between maneuver modes may degrade the prediction
accuracy.

The maneuver mode transition of HGVs is closely
tied to the attacker’s tactical objective, striking the desig-
nated target. Accordingly, attack intent inference is crucial
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for identifying the target to be attacked and enabling the
long-term prediction of the HGV trajectory. While intent
inference has been widely employed in other domains,
such as combat aircraft [16], [17], [18], its applicability is
relatively unexplored for HGVs. One prominent approach
to intent inference is planning-based, which designs a ra-
tional decision-making model under the premise that the
HGV maximizes the tactical objective cost for achieving its
intent [19]. Although this method explicitly reasons out the
HGV’s intent, it fails when the real-world HGV does not
conform to the rational model [20]. Furthermore, it typically
relies on simplistic metrics (e.g., distance to the target)
without a deeper consideration of dynamic information.
The data-driven approach can obviate such modeling issues
by directly inferring the intent from the observed HGV
trajectory [3], [21]. This idea can be further advanced to
end-to-end learning frameworks that directly predict the
HGV’s future trajectory, bypassing a separate intent infer-
ence stage [8], [22], [23]. However, the performance of the
data-driven approaches hinges on the quality of available
datasets, whereas the HGV flight data are hard to acquire in
real warfare scenarios.

Motivated by the aforementioned drawbacks, this ar-
ticle proposes an attack intent inference framework by
developing a unified dynamics and decision-making model
for HGVs. This method infers the potential attack target
in a planning-based manner while taking appropriate care
of the uncertainties inherent in the both dynamics and
decision-making models. First, the current state of the HGV
is estimated from the observed trajectory, and potential
trajectory samples are generated by propagating the state
forward through the numerical integration of the stochas-
tic HGV dynamics. These samples form the dynamically
feasible region, whereby it is determined whether each
target is reachable. Subsequently, the probability distri-
bution of HGV’s future state with respect to each target
is computed. Based on this probability distribution, we
encode the attack intent into the decision-making model,
strategically selecting the target that maximizes the threat
value.

On the other hand, environmental disturbances, sensor
noise, or the simplified dynamics model may introduce dy-
namics uncertainties, and the assumption that the HGV pri-
oritizes targets solely by threat value may not fully capture
the attack intent in the real world. To address such uncertain-
ties, the decision-making model incorporates a proximity
parameter in light of the maximum entropy principle [24].
The use of proximity-based decision-making models has
been widely studied in many applications, such as robotics,
autonomous vehicles, and aerial platforms [20], [25], [26].
To the best of the authors’ knowledge, however, this is the
first attempt to apply the proximity parameter into the HGV
prediction problem. This parameter handles uncertainties
by evaluating how well the observed HGV behavior aligns
with dynamics and the decision-making models. Finally,
Bayesian inference is employed to recursively update the
probability of the potential attack target with respect to the
estimated proximity parameter.
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Fig. 1. Illustration of the HGV’s attack scenario: (a) Dynamics-based
prediction considers dynamical feasibility but overlooks tactical
objectives. (b) Planning-based prediction only focuses on tactical
objectives. (c) Proposed prediction integrates dynamical feasibility and
tactical objectives to improve intent inference accuracy.

In summary, the proposed algorithm unifies dynamics-
based trajectory propagation with planning-based decision
reasoning to facilitate precise and reliable intent inference,
as illustrated in Fig. 1. By leveraging both dynamical fea-
sibility and tactical objectives, we can complement the
dynamics and the decision-making model with each other.
The contributions of this article are summarized as follows.

1) We propose an attack intent inference framework
that integrates the dynamics and the decision-making
model of HGVs, enabling precise and timely predic-
tion of the target to be attacked.

2) We introduce the proximity parameter to the
decision-making model, enhancing the prediction
reliability in handling uncertainties.

3) Numerical simulations are conducted to validate the
effectiveness of the proposed algorithm compared to
existing approaches, under different scenarios with
varying uncertainty levels.

The rest of this article is organized as follows. Section II
introduces the mathematical models, including the HGV
dynamics and its parametric representations. Section III
details the proposed attack intent inference framework, inte-
grating dynamics-based prediction with the planning-based
decision-making model. Numerical simulation and compar-
ative studies are presented Section IV. Finally, Section V
concludes this article.

[I. PROBLEM FORMULATION
A. HGV Dynamics Model

Neglecting the effects of the Earth’s oblateness and
rotation, the dynamics model of HGV is described in
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the velocity-turn-climb (VTC) coordinate system as fol-
lows [8], [14]:

v sin 6
v cos 6 sin x
(Ro+h)cos
v cos 0 cos x
R.+h
D .

—. — &sinf
Lcosy v cos gcosf
mv + R.+h - v
Lsiny + v cos O sin x tan Y
L muv cos 6 R.+h .

)]

where state vector x := [k, ¢, ¥, v, 0, x] represents the al-
titude, longitude, latitude, velocity, flight path angle, and
flight heading angle, respectively, m denotes the HGV’s
mass, R, is the Earth’s radius, and g is the gravity acceler-
ation. The bank angle is denoted as y, and L and D are the
aerodynamic lift and drag, respectively, which are defined
as

_ pv°SCi(a, Ma)

L: ,
2
2SCp(a, M
p .= PVt V) Dz(“ 2) )

where C; and Cp represent the aerodynamic lift and drag
coefficient, respectively, which are functions of angle of
attack o and Mach number Ma. § is the HGV’s reference
area, and p is atmospheric density which is modeled using
the exponential equation [9], [27]

p = poexp (—h/hs)

where p is the atmospheric density at sea level, and Ay is
the scale height, describing the rate of density decrease with
altitude.

B. Parametric Dynamics Model

Asseenin (1) and (2), the states of HGV are governed by
the interplay between aerodynamic forces and the guidance
law’s control inputs, « and y . These interdependencies pose
challenges in accurately estimating the vehicle states due to
their high dimensionality and nonlinear coupling. Such a
complexity can be handled by parameterizing the dynamics
model [3]. This approach consolidates unknown parameters
into a reduced set of composite parameters, simplifying the
estimation process and enhancing computational efficiency.

Based on (2), the aerodynamic acceleration in the VTC
coordinate system can be expressed as follows [13]:

pv>SCp(a, Ma)

ay =
2m
pv*SCr (o, Ma) .
= —————siny
2m
28Cr(a, M
a3 = pv°SC; (o, Ma) cos y (3)
2m

where a, a,, and as, respectively, represent the aerody-
namic accelerations in the velocity, turn, and climb di-
rections. Here, ,0v2/2 is a state-dependent variable that
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is generally observable via various sensor measurements. '
However, other critical parameters, such as the dynamics
model variables (S, m), aerodynamics coefficients (Cp, Cyr),
and control inputs (¢, y) remain unobservable. Since these
are crucial for accurately predicting the HGV'’s states, they
must be estimated online.

To reduce dimensionality and handle the coupling
among these unknowns, we regroup them into the com-
posite parameters u := [u;, up, uz] as the control state to be
estimated, each defined as

SCp(a, Ma)
u = —
m
SCr (o, Ma)
U = —m—mm
m
uz =vy. 4)

By substituting (4) into (1), the dynamics model of HGVs
can be reformulated with the augmented state vector X :=

[h, ¢, ¥, 0,0, x,u, uy, u3]

vsin6
v cos 0 sin x
(Ro+h) cos
v cos 6 cos x
o Reth
pv° :
—5-u; — gsin6
v — — pv vecosf _ geost
X=fX) = 7 U2 cosus + B v
pv v cos 6 sin x tan Y
2cos 6 R.+h

&)

Uy sin uz +
wi

w2

w3

where w = [wy, wa, w3] ~ N (0, £,,) is a zero-mean white
noise vector, introduced to account for the dynamic uncer-
tainties associated with the control state . Every moment
the measurement is acquired, these states are iteratively
estimated using a nonlinear filtering approach, such as the
Cubature KF (CKF) [28].

[ll. ALGORITHM DEVELOPMENT

The proposed algorithm consists of three main modules:
1) dynamics-based prediction; 2) planning-based predic-
tion; and 3) attack intent inference. Fig. 2 provides an
overview of the proposed algorithm.

A. Dynamics-Based Prediction

To utilize dynamics information in attack intent infer-
ence, the proposed algorithm first predicts the probability
distribution of future states using the dynamics model. At
time step ¢, the estimated state is assumed to follow a normal
distribution

X'~ Ny, =) (6)

In this article, we assume that the HGV’s state x is obtained through
the postprocessing of radar measurements with Gaussian noise as

N, o?) [8].
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Fig. 2. Overall architecture of the proposed attack intent inference framework with the unified dynamics and decision-making model.

where uf and i, respectively, represent the mean and
covariance of the estimated state. To generate potential
future trajectories propagating from time step ¢, Monte
Carlo (MC) simulations are performed with different initial
states sampled by (6). Although the generated trajectory
samples comply with dynamics model (5), they may not
adequately reflect the variation of control inputs (u;, us, u3)
that are more subject to the attacker’s intent. In particular,
the bank angle y (i.e., u3) can undergo substantial shifts
momentarily, allowing the HGV to execute abrupt turns
and reach distant targets. Consequently, relying solely on
the dynamics model-based sampling of y during forward
propagation could underestimate the true reachable region.
To better address such irregular behavior, we exceptionally
sample y from a uniform distribution over a dynamically
feasible range during each MC run?

Yy~ U(Vmim ymax) (7)
where yYmin and ymax represent the lower and upper bounds
of the feasible bank angle range. Note that this remedy does
not reshape the dynamics model, rather it algorithmically
addresses exception handling.

Each sampled state from (6) and (7) is then propagated
forward in time via (5) until the HGV reaches the ground.
During this process, the noise terms wy, w;, and w3 in (5) are
set to zero to enable deterministic trajectory propagation and
reduce computational overhead. This step yields potential
trajectory samples as follows:

t+T

S|
rkz{xk,xk ce X 1,..., Ny

’

} vk =

2In contrast, the other parameters 1| and u; typically show smaller varia-
tions over the entire flight. Detailed profiles of u are displayed in SectionIV.
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where N; is the number of MC samples, and T represents
the time step when the HGV reaches the ground.

Inspired by rejection sampling principles in MC meth-
ods [29], the proposed algorithm then prunes trajectory
samples that fail to meet specific feasibility requirements.
Specifically, let §; € {51, 62, ..., o, } be the set of potential
attack targets, and define the trajectory as feasible if it
terminates within the target region R;,. The set of feasible
trajectories for a target §; is given by

T Xt

Ti = { €Ry} Vi=1,...,Ns. )

By filtering out trajectories that fall outside Rj,, the algo-
rithm ensures dynamically feasible samples for each target.

Finally, for each target §;, the HGV’s future state proba-
bility distribution is computed by normalizing 7;. Assuming
a normal distribution, the predicted state at r + 1 condi-
tioned on reaching §; is given by

P, 8) ~ N (it 51 (10)
where
1
1+1 t+1
wH==> x5
Tl &

1

B = ey DT =) (T - ) A

keT;

This distribution provides the predicted mean and covari-
ance of HGV’s future state with respect to each target, which
is then incorporated into the subsequent decision-making
process to reflect the HGV’s dynamical feasibility. The
overall process of dynamics-based prediction is illustrated
in Fig. 3.
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Fig. 3. Illustration of the dynamics-based prediction process.

B. Planning-Based Prediction

Extending beyond the dynamics-based prediction, we
develop the decision-making model of the HGV by incor-
porating tactical objectives, such as the threat value V (§;).
This threat value V (;) can be defined by the defender based
on available mission-level information, such as the strategic
importance of facilities, population density, or military asset
distribution [30]. While the attacker’s true intent is not
directly observable, these values serve as reasonable proxies
for what a rational attacker might prioritize in order to
deliver maximum damage to the defender. Accordingly,
the decision-making model is designed such that the HGV
strategically selects the target §; to maximize V (§;). How-
ever, this rational model, whose decision-making is solely
based on the threat value V (§;), may not fully capture the
complexities of attack intent in the real world. Furthermore,
environmental disturbances, sensor noise, and simplified
dynamics introduce uncertainties, further complicating ac-
curate intent inference.

To account for these uncertainties, the decision-making
model incorporates a proximity parameter S € (0, 00),
grounded in the maximum entropy principle [24]. This ap-
proach has proven its effectiveness in fields like robotics and
autonomous systems to model decision-making processes
under uncertainty [20], [26]. According to the maximum
entropy principle, the state transition of the HGV forms an
exponential probability distribution associated with threat
value, i.e., its direction is exponentially more likely to-
ward the target with higher V (§;). In this framework, the
proximity parameter 8 enables the proposed algorithm to
1) properly update the HGV’s state transition probability
while ensuring dynamical feasibility; and 2) further adjust
the transition probability in the presence of potential model
discrepancies and dynamics uncertainties.
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Building on the dynamics information from (10), the
decision-making model incorporates both tactical objec-
tives and the proximity parameter, defining the state transi-
tion probability as follows:

P(X, 8, B)

(1 r41y2
(x 7% )) (12)

_ 7-1 . A
=z exp(—ﬂ, Ve et

where Z is a normalization constant. Consistent with (10),
this probability distribution in (12) can also be expressed as
a normal distribution

P(xl+1|xf’ 81', /81) '\’N(/:Lt+1, i:)t;l*l)

X

where the mean ji’*! and the variance ¥ *! are defined as
S| 1
[RR—
r+1
S+l Ex
) BiV ()

Notably, the parameter f; directly modulates the covariance
of state transition (12). A higher g; results in a concen-
trated distribution of the HGV behavior maximizing the
threat value V (§;), implying the decision-making model that
the HGV rationally pursues the primary tactical objective.
Conversely, a lower B; leads to a dispersed distribution
of the HGV behavior, allowing the inference process to
accommodate the potential discrepancy in the attacker’s
decision-making model as well as uncertainties in the sys-
tem dynamics. This decision-making model thus accounts
for both the dynamics and the uncertainty inherent in the
HGV’s tactical behavior, serving as a basis for attack intent
inference.

C. Attack Intent Inference

Under the decision-making model, the state transition
probability distribution derived in (12) serves as the likeli-
hood for intent inference. Intuitively, this likelihood reflects
how well the model aligns with the observed trajectory of
HGV. When new measurements x'*! are obtained, Bayesian
inference is performed to infer both the proximity parameter
B and the target to be attacked . This inference is updated
in a recursive manner, where the each recursion carries out
the following steps.

First, the proximity parameter f;, associated with each
target 8;,1 € {1, 2, ..., Ns}, is updated by the Bayes rule
P, 8, BOP(Bilx"™, &)

P()Ct+l |xt’ 81)
To ensure §; value within the practically valid range (0, 00),
the prior is modeled as a truncated normal distribution ; ~

TN (g, £p,, 0, 00) [31]. The corresponding probability
density function at time step 7 is given by

P(IBi|x1:l‘+1 , 8,) —

(13)

BT
-l
=00, 25" P

0, Bi <0

P(Bilx"", 8;) = (14)

where W and @, respectively, represent the probability den-
sity and cumulative distribution functions of the standard
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normal distribution

1 (B — ply )?
R
ZnE"Si Bi

0
¢(o;ug,zg)=1/ W (Bis 1, Tp,) dBi.
—00

Under this prior (14) and likelihood derived from
(12), the posterior probability of proximity parameter
P(Bi|x"*1, ;) from (13) is represented by

O 8, BOP(Bil 81)
_ 1 AU
28 2m (1 — ®(0; ply . T4 ), /3, et

(B — 1)’ Lty

1
P : 1:t+1, Si — P
(Bilx ) Z

15)

where Zﬁ = fP()CH_l |)Ct, 8,’, ﬁ[)P(,B”)Cl:t, 8,)d,3, is the
normalization constant ensuring that the posterior
P(Bi|x""*1, 8;) integrates to 1. Analytically obtaining the
exact solution to (15) is intractable due to the nonlinearity
inherent in the likelihood and the prior. To address this
challenge, we utilize the Laplace approximation, which
approximates the posterior as a normal distribution for
computational efficiency [32]. The mean and covariance of
the approximated posterior probability are given by

41 a+~a?—4b
i =

B 2
—1
22‘+1 _ L T — 1 (16)
B Etﬁ Z(Mt+1)2
where a = pjy =V (8)T (XHIZ,HM)Z and b = — =% Then,

the resulting probability dlstnbutlon is truncated again to
ensure that 8 remains within the practically valid range.
The mean of the truncated normal distribution from (14) is
given by

a7

1 1 v (0 Mﬂ’ z )
pit = gt - L e,
P (O; M%f’ z:/l‘3z'>

Finally, based on the proximity parameter B; and new
measurement x' !, the conditional probability of potential
target §; to be attacked is updated as follows:

O, 8, BPGilx™, B)
P Hx', By)
PN, 8, BOP(SiIXY, Bi)
>os, PG, 8;, BP (81X, Bi)
(18)

P(Six" T, ) =

The probability of attack intent P(8; | x'**!) is then ob-
tained directly from P(§; | x'*!, B; = ,a’/;l) and (17). The
overall process of the algorithm is described in Algorithm 1.
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Algorithm 1: Attack Intent Inference Algorithm.

Input Estimated state distribution P(X"),
Measurement x' !, Targets §; € {81, 62, - ..
and Sampling Number N

Output Probability of attack intent P(8;|x'"+1)

forallk < 0,1,---N; do

Sample initial conditions from (6) and (7)
Generate potential trajectories 7; using (8)
end for

foralli < 0,1, ---Nsdo

Identify the set of feasible trajectories 7; for
the target §; using (9)

7:  Compute P(x'*!|x’, ;) using (10)

8:  Compute P(x'"'|x", §;, B;) using (12)

9:  Update P(B;|x""*1, §;) using (16)

10: Truncate B; using (17)

11:  Update P(8;|x""*!, B =

12:  end for

, g b

BAISANF I e

= ﬂ’ﬁ“) using (18).

IV. NUMERICAL SIMULATION

The effectiveness of the proposed algorithm is evalu-
ated through extensive simulations. In individual simulation
scenarios, the HGV exhibits highly dynamic maneuvers,
including multiple skipping and turning, and eventually
strikes one of the designated targets. The proposed al-
gorithm is demonstrated with two distinct scenarios, and
further comparative, ablation studies, sensitivity analysis,
and computational complexity are carried out.

A. Simulation Setup

The dynamics of HGV is modeled by (1), whose model
and aerodynamic parameters are set according to the com-
mon aero vehicle-h (CAV-H) model [33]. The trajectory of
HGYV is then generated using the Runge—Kutta integration
method based on the applied control inputs, guiding the
HGYV toward the designated target. Recalling (1) and (3),
the control inputs consist of the angle of attack « and
bank angle y. Accounting for the physical constraints on
the HGV maneuverability in practice, the profile of « is
defined as a piecewise linear function of velocity, expressed
as follows [34]:

Qmax» vV >V

o =\ Omax + (aL/D,max Uma) 7=, v <V =1,

Vy—v;
OL/D,max V<1
where amax is the maximum angle of attack, and o /p max
is the angle of attack at the maximum lift-to-drag ratio.
vy and v, are velocity transition points, ensuring the HGV
maintains adequate maneuverability while approaching the
target. In parallel, a proportional navigation guidance law is
used to adjust the bank angle y [35]. To prevent physically
infeasible maneuvers, y and its rate of change y are limited
to y € [—45°,45°], y € [—2°, 2°]. The detailed dynamics
model and simulation parameters are summarized in Table I.
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TABLE I
HGV Dynamics Model and Simulation Parameters
Parameter Description Value
m Mass 907 kg
S Reference area 0.4839 m?
g Gravity 9.81 m/s?
R, Earth radius 6378 km
Po Atmospheric density constant  1.22 kg/m®
Omax Maximum angle of attack 20°
Angle of attack at o
OL/D,max maximum lift-to-drag ratio 10
TABLE 11
Initial State of HGV
State Value State Value
ho 54-55 km Vo 3050-3100 m/s
do 0° 0o -0.1-0°
’(/JO 0° X0 0-0.1°

The initial states of HGV? are set at a certain range of
gliding maneuver conditions, as outlined in Table II. Based
on these initial states and the allowable ranges of the control
inputs, the reachable region is first determined to ensure that
target selection remains the dynamically feasible region.
Fig. 4 visualizes the range of trajectory samples that can
be generated from the allowable initial states and control
inputs. The trace of all these samples forms the dynamically
feasible region of HGV in this simulation setup. For the
attack scenario specified in the next subsection, all the tar-
gets §; fori € 1,2, ..., N; are arbitrarily configured within
this region. This implies the initialized HGV can reach any
target, and thus fast and accurate attack intent inference is
crucial for predicting its intended destination in a timely
manner.

3In our simulation study, we do not fully simulate the trajectory of HGV
from its boosting phase, but instead initialize from its gliding phase. Thus,
the initial state of HGV is defined as the state when it is first observed by
radar, having already transitioned into the gliding mode [8].
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.., 0Ny}, N5 = 6 are arbitrarily placed.

The simulations are executed on an AMD Ryzen 9
7950X 16-Core processor with 32 GB of RAM and a
GeForce RTX 4090 GPU. The proposed framework is im-
plemented using the Python library JAX to enable parallel
computation on GPUs [36]. Further details on the simu-
lation can be founded in our GitHub repository at https:
/I github.com/HMCL-UNIST/AttackIntentInference.git.

B. Scenario Specification

Based on the above simulation setup, the simulated
trajectories leading to each target are illustrated in Fig 5.
The corresponding control state histories u = [u, uy, u3]
are plotted in Fig. 6. As noted in Section III-A, « is unknown
and its estimation error is the crucial factor of dynamics
uncertainty. Notably, u3 (i.e., bank angle) exhibits abrupt
variations during the flight, making the estimation signif-
icantly erroneous and impeding the subsequent trajectory
prediction.

On top of these dynamics uncertainties, we further
impose the different levels of uncertainties in the proposed
rational decision-making model through the following two
distinct scenarios.

1) Scenario 1: The HGV attacks the target with the
highest threat value V (§;), whose target selection
logic is well-aligned with the proposed decision-
making model (i.e., low-level of uncertainty).

2) Scenario 2: The HGV randomly attacks a target,
irrespective of the threat value V (;). This scenario
introduces discrepancies between the real target se-
lection and the proposed decision-making model
(i.e., high-level of uncertainty).

In the both scenarios, the threat value V (§;) is randomly
chosen within the range 0 < V (§;) < 1. Fig. 7(a) and (b)
illustrate example trajectories and the corresponding threat
values for the each simulation run of Scenario 1 and Sce-
nario 2, respectively. In Fig. 7(a), the HGV’s trajectory is
directed toward the target with the highest threat value (i.e.,
83). In contrast, Fig. 7(b) shows a case where the HGV
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Fig. 7. Example trajectories and threat value assignments under the
single HGV setting for Scenario 1 (left) and Scenario 2 (right).

attacks &, despite §; having the highest threat value (8,
is indeed the one with the lowest threat value). This may
implicate two reasons for the model discrepancy: 1) the
attacker may operate under internal priorities different from

NAM ET AL.: ATTACK INTENT INFERENCE OF HGV BASED ON A UNIFIED DYNAMICS AND DECISION-MAKING MODEL

the proposed decision-making model (e.g., selecting a lower
threat target); or 2) the defender’s specification of threat
values may not accurately capture the attacker’s true threat
values. In either case, Scenario 2 allows us to rigorously
evaluate the proposed framework under the high level of
uncertainty in the decision-making model.

Besides the uncertainty level of the decision-making
model, we additionally consider four operational condi-
tions, each combined with Scenario 1 and Scenario 2,
respectively, resulting in eight distinct cases as follows.

1) Nominal: The baseline setting without any variations
in operational conditions.

Data Packet Loss: This condition simulates commu-
nication dropouts by withholding measurement data
during a fixed time interval.

Sensor Failure: This condition simulates a tem-
porary sensor malfunction by injecting abnormally
large noise into measurements.

Multi-HGV and Multitarget: This condition con-
siders the simultaneous deployment of two HGVs,
each assigned to a different target, to evaluate the
scalability of the inference framework in multiagent
scenarios.

2)

3)

4)
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In the nominal case, the HGV state is assumed to
be measured with Gaussian noise N (0, af), where o, =
[5 m, 0.0005°, 0.0005°, 2 m/s, 0.05°,0.05°] [5]. For the
data packet loss and the sensor failure cases, the respec-
tive conditions are introduced between time steps 70 to
90 in the simulation, corresponding to a period of rapid
bank angle transition, as shown in Fig. 6. In the data
packet loss case, measurement data is completely with-
held, while in the sensor failure case, measurements re-
main available but are subject to high sensor noise o}, =
[10 m, 0.001°, 0.001°, 3 m/s, 0.1°, 0.1°].

Apart from the single-HGV cases, we also consider
the multi-HGV and the multitarget setting, illustrated in
Fig. 8. In the Scenario 1 multi-HGV case, HGV1 is in-
tended to attack the target with the highest threat value,
while HGV?2 is assigned to the second-highest target. This
represents a case where the both HGVs act according to the
defender’s decision-making model. In contrast, the Scenario
2 multi-HGV case assumes that the both HGVs arbitrarily
select their targets regardless of the defender-assigned threat
values, implying the ill-posed decision-making model.

C. Algorithm Demonstration

This section demonstrates how the proposed inference
algorithm operates over time based on the representative
trajectories defined in the illustrative scenarios of Fig. 7(a)
and (b). The proposed algorithm iteratively updates attack
intent inference at each time step until the HGV reaches its
target. For each step, the CKF [28] is utilized to estimate
the current state of HGV using (5). Based on the estimated
state and (6) and (7), Ny, = 2000 trajectories are sampled to
predict the dynamically feasible region. The prior proba-
bility of each target being attacked P(8;]x), is initially set
as 1/Njs, ensuring an equal likelihood across all potential
targets at the beginning. Meanwhile, the prior distribution
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of the proximity parameter is defined as a truncated normal
distribution, P(B;|x°, 8;) ~ TN (0.5,0.1, 0, 0o) [32].

Figs. 9 and 10, respectively, present a series of demon-
stration snapshots of the proposed algorithm. The individ-
ual snapshots illustrate the progression of dynamics-based
trajectory propagation and attack intent inference using
the unified dynamics and decision-making model. The top
row in Figs. 9 and 10 visualizes the dynamically feasible
region (shaded in yellow), along with sampled trajectories
leading to the potential targets. Correspondingly, the bottom
row displays the probability of each target being attacked,
whereas the red color indicates the actual target to be
attacked by the HGV.

During the early stages of the simulation, it is dynam-
ically feasible for the HGV to attack any of the potential
targets, resulting in a broad feasible region. However, the
proposed algorithm compensates for this by incorporating
the decision-making model with threat value V (§;) to infer
the attack intent. As a result, in the low uncertainty sce-
nario where the HGV attacks the target with the highest
threat value (Scenario 1), Fig. 9 shows that the probability
assigned to the actual target rapidly increases over time.
Conversely, in the high uncertainty scenario where the HGV
attacks a target randomly (Scenario 2), Fig. 10 shows that
the probabilities of each target being attacked are relatively
dispersed for a while, reflecting a discrepancy between the
model and observed behavior. Nevertheless, the proximity
parameter S mitigates this uncertainty by progressively
refining the probability distribution, as formulated in (12).
Hence, despite the high uncertainty, the proposed algorithm
successfully adapts to the uncertain HGV behaviors, ensur-
ing reliable attack intent inference.

For a more comprehensive evaluation of the proposed
algorithm, four analyses are carried out in the following
subsections.

1) Comparative Study evaluates the performance of
attack intent inference in comparison to the two
existing methods [7], [19].

2) Ablation Study examines the effectiveness of the
proximity parameters against the uncertainties in the
dynamics and the decision-making models.

3) Sensitivity Analysis investigates the impact of vary-
ing key parameters on inference performance.

4) Computational Complexity assesses the runtime ef-
ficiency of the proposed framework.

D. Comparative Study

The comparative study performs the same simulation
scenarios with the two existing baseline methods: 1) the
dynamics-based prediction [7]; and 2) the planning-based
prediction [19]. Their detailed mechanisms are described as
follows.

1) Dynamics-Based Prediction [7]: This method prop-
agates potential trajectories from the current esti-
mated state and identifies those that are terminated
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Fig. 10. Snapshots of the proposed attack intent inference framework over time in Scenario 2.

within the target region R(§;). The attack intent is in- where a, b, and ¢ are weighting factors, dgistance

ferred by calculating the fraction of these trajectories gauges the change in the HGV-target distance along

relative to the total number of generated trajectories. the shortest path, while dj¢,q¢ measures the angular
2) Planning-Based Prediction [19]: This method en- deviation between the HGV’s heading and the direc-

codes the HGV’s attack intent into a rational tion toward the target.

decision-making model under the premise that it

maximizes the threat value while following the short- The proposed inference framework is compared against

est path to the target. Based on this decision-making the above two existing methods across the eight distinct
model, the algorithm defines the state transition cases, covering all the combinations of the two decision-

probability as follows: making scenarios and the four operational conditions. Each

method is evaluated over 300 independent simulation runs

PG, 8) per case. The main results under nominal condition are
XX 8

presented in Figs. 11 and 12 and Table III. Figs. 11 and

~ exp (a - ddistance + D - dnead — ¢ - V(6;)) 12 plot attack intent inference performance over time, i.e.,
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TABLE III
Inference Time and Success Rate Analysis for Nominal Condition
Scenario 1 Scenario 2
Inference | Success | Inference | Success
Time [s] | Rate [%] | Time [s] | Rate [%]
Proposed 184.72 89.6 184.19 87.8
Proposed without /3 224.87 81.0 233.78 76.3
Dynamic-based prediction [7] 224.15 83.3 226.22 84.6
Planning-based prediction [19] 187.85 88.4 222.67 79.25

the probability update statistics of the target being attacked
(mean and variance). Table III presents the performance
comparisons of the methods with respect to two relevant
measures:

1) Inference Time: the time elapsed until the correct in-
ference made, i.e., the probability of the actual target
exceeds a high enough threshold (0.9 in our set-up),
indicating the speed of inference convergence; and

2) Success Rate: the rate of correct inference made be-
fore the HGV descends below a low enough altitude
threshold.

In particular, since prediction during skipping maneu-
vers is hardly tractable due to rapid trajectory changes [9],
the success rate is evaluated at the point when the skipping
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TABLE IV
Inference Time and Success Rate Analysis for Data Packet Loss

Condition
Scenario 1 Scenario 2

Inference | Success | Inference | Success

Time [s] | Rate [%] | Time [s] | Rate [%]
Proposed 194.19 87.8 189.4 88.3
Proposed without 3 232.37 74.0 237.87 74.7
Dynamic-based prediction [7] 226.62 84.0 221.26 82.3
Planning-based prediction [19] 194.7 89.7 232.18 75.4

maneuver concludes, typically at an altitude of 35 km in
our setup (See Fig. 5). A high success rate signifies both the
accuracy of the prediction and its practical implication, as a
successful inference under these conditions would facilitate
effective interceptor engagement.

As seen in Table III, the dynamics-based prediction [7]
converges at approximately 230 s in both scenarios. This
relatively slower convergence can be attributed to the lack
of consideration to the decision-making model, which lim-
its its ability to take notice of the different threat values
of the targets. Furthermore, as illustrated in Fig. 6, the
bank angle undergoes dramatic changes around 100 s, in-
troducing significant uncertainty into the estimated state.
This uncertainty eventually degrades the inference perfor-
mance, leading to reduced success rates. Consequently,
the dynamics-based approach struggles to maintain reliable
prediction in scenarios involving the high maneuverability
of HGV.

On the other hand, the planning-based prediction [19]
overly relies on the threat value V (§;) for its decision-
making process. While this dependency allows it to per-
form adequately when the actual target agrees with the
highest threat value (Scenario 1), it significantly limits its
adaptability in the random target scenario (Scenario 2). As
shown in Table III, the planning-based method in Scenario
2 significantly degrades in both inference time and success
rate, compared to Scenario 1. Furthermore, the dynamics
information considered in this method merely accounts for
the shortest path to the target, lacking insight into dynam-
ically feasible trajectories. Consequently, during the early
stages of the simulation, the inference exhibits significant
variance depending on the target location.

In contrast, the proposed algorithm overcomes the limi-
tations of the existing methods by effectively integrating the
dynamics and the decision-making model, enabling faster
and more accurate attack inference. In addition, the proxim-
ity parameter effectively handles dynamical uncertainties
and the potential discrepancy from the rational decision-
making model, ensuring reliable performance across sce-
narios with varying uncertainty levels. As a result, the
proposed algorithm demonstrates a steady and progressive
increase in the target probability over time regardless of
uncertainty levels, as illustrated in Figs. 11 and 12. Further-
more, it achieves faster convergence and higher accuracy
compared to existing baselines, as shown in Table III.

These advantages become even more pronounced under
adversarial operational conditions. Table IV presents the re-
sults under data packet loss, and Table V shows performance
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TABLE V
Inference Time and Success Rate Analysis for Sensor Failure Condition

Scenario 1 Scenario 2
Inference | Success | Inference | Success
Time [s] | Rate [%] | Time [s] | Rate [%]
Proposed 189.33 88.8 191.2 87.8
Proposed without 3 246.7 70.7 247.64 71.3
Dynamic-based prediction [7] 236.26 82.8 238.22 79.9
Planning-based prediction [19] 183.6 87.9 234.06 71.7
TABLE VI

Inference Time and Success Rate Analysis Under the Multi-HGV and
Multitarget Condition in Scenario 1

HGV1 HGV2
Inference | Success | Inference | Success
Time [s] | Rate [%] | Time [s] | Rate [%]
Proposed 185.54 90.9 184.72 86.3
Proposed without 3 223.8 78.5 237.81 76.0
Dynamic-based prediction [7] 232.85 82.8 246.22 78.2
Planning-based prediction [19] 190.4 87.3 223.5 82.4
TABLE VII

Inference Time and Success Rate Analysis Under the Multi-HGV and
Multitarget Condition in Scenario 2

HGV1 HGV2
Inference | Success | Inference | Success
Time [s] | Rate [%] | Time [s] | Rate [%]
Proposed 189.88 90.3 188.86 88.8
Proposed without 3 233.68 75.0 234.45 75.8
Dynamic-based prediction [7] 232.77 82.8 245.2 78.8
Planning-based prediction [19] 233.02 78.5 238.24 72.9

under sensor failure. In the both cases, the inference time
of the proposed method slightly increases due to the extra
operational uncertainties. Nevertheless, it consistently out-
performs the dynamics-based and planning-based methods
in terms of both inference accuracy and reliability.

Lastly, Tables VI and VII highlight the scalability of the
proposed framework in the multi-HGV inference. The re-
sults demonstrate that the proposed framework consistently
achieves a high success rate while maintaining lower infer-
ence times compared to the existing methods, regardless of
which HGV intends to attack which target. Similar to the
single-HGV condition, the planning-based method shows
strong dependency on the threat values. Consequently, when
another HGV is assigned to arelatively lower threat target as
inthe case of HGV2in Scenario 1, its inference performance
degrades significantly, revealing its limited adaptability in
the multi-HGV condition. In contrast, the proposed algo-
rithm accounts for the potential discrepancy in the attacker’s
decision-making model, and thus can robustly cope with
multi-HGV conditions without requiring any substantial
modification.

E. Ablation Study

To further examine the role of the proximity parameter
on the proposed intent inference framework, an ablation
study is conducted by comparing the full proposed method
with a modified version where the proximity parameter
is excluded from (12)

(xt-H

PO, 8) ~exp [V (8)) - _—M;—H)z
£ l P 1 22§+1 .
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Each method is evaluated over 300 simulation runs across
the eight cases, as described in Section IV-B. The results
under nominal conditions are summarized in Figs. 13 and
14, as well as Tables III. As shown in the results, the
proposed method demonstrates smoother and faster con-
vergence compared to the ablated model. It is prominent
that the absence of the proximity parameter yields more
variability of the inference in the early stage of simula-
tion. Moreover, the results subject to the other operational
conditions (See Tables IV-VII) consistently highlight the
effectiveness of the proximity parameter. These results
underscore the critical role of the proximity parameter in
handling the uncertainties inherent in the decision-making
model.

. Sensitivity Analysis

Building on the previous analysis, we further assess
the robustness of the proposed framework by conducting
a sensitivity analysis. As defined in (12), the proposed
model depends on three elements: 1) measurement noise
N (0, 62); 2) threat value V (§;); and 3) proximity parame-
ter ;. Among these, o and V (§;) are externally specified
parameters, whereas f; is an internally estimated parameter
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TABLE VIII
Inference Performance Under Varying Measurement Noise Levels
for Scenario 1

Inference Time [s] | Success Rate [%] | Inferred /3
Nominal noise setting (c,) 184.72 89.6 0.00147
Higher noise setting (0,) 207.40 82.5 0.00094
TABLE IX

Inference Performance Under Varying Measurement Noise Levels
for Scenario 2

Inference Time [s] | Success Rate [%] | Estimated 3
Nominal noise setting (o) 184.19 87.8 0.00321
Higher noise setting (07,) 212.70 82.9 0.00160
TABLE X

Inference Performance and Estimated § Under Varying Threat
Value Ranges for Scenario 1

Threat Range Inference Time [s] | Success Rate [%] | Estimated [

0<V(©)<1 184.72 89.6 0.00147

0< V() <10 190.02 86.7 0.00017

0 < V(8 <100 198.44 81.0 0.00001
TABLE XI

Inference Performance and Estimated g Under Varying Threat
Value Ranges for Scenario 2

Inference Time [s] | Success Rate [%] | Inferred 3
0<V()<1 184.19 87.8 0.00367
0< V() <10 190.89 87.0 0.00054
0 < V(6) <100 183.35 84.5 0.00001

through the Bayesian inference process (13). Accordingly,
to conduct a fair sensitivity analysis, we vary the external
parameters o and V (§;), and evaluate the susceptibility in
inference performance and the estimated ;. Specifically,
the following two variations are tested for the sensitivity
analysis purpose.

1) Measurement Noise Level Variation: We compare
the nominal noise setting o, = [5 m, 0.0005°,
0.0005°, 2m/s, 0.05°, 0.05°] with the higher noise
setting o, = [10 m, 0.001°, 0.001°, 3m/s, 0.1°,
0.1°].

2) Threat Value Variation:* We evaluate three distinct
ranges of threat values, namely 0 < V(§;) < 1,0 <
V() <10,and 0 < V(6;) < 100.

The above variations are, respectively, applied to Sce-
nario 1 and Scenario 2, under the nominal operational con-
dition. All simulations are conducted over 300 independent
runs. Tables VIII and IX present the results under varying
noise levels for each scenario. As expected, inference per-
formance degrades with respect to increasing measurement
noise. In addition, Tables X and XI summarize the algo-
rithm’s sensitivity to the threat value variation. As the range
of threat values increases, inference performance gradu-
ally degenerates due to amplified discrepancy between the
considered decision-making model and the HGV observed
behavior.

Although inference performance inevitably degrades
under higher uncertainty, the proximity parameter helps

4In practice, threat values are often normalized within the range [0,1] [37],
whereby the excessive threat value variation can be mitigated.
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TABLE XII
Average Execution Time Per Time Step With Respect to
Different Numbers of MC Samples

500 1000 1500 2000
PC 1 | 0.0171s | 0.0174s | 0.0179s | 0.0183s
PC 2 | 0.0206s | 0.0208s | 0.0217s | 0.0232s
TABLE XIII

Inference Time and Success Rate With Respect to Different
Numbers of MC Samples

500 1000 1500 | 2000
Inference Time [s] | 205.19 | 195.94 | 188.5 | 184.72
Success Rate [%] 87.67 89.2 89.2 89.6

mitigate this degradation by compensating for variations
in measurement noise and target value. This mechanism is
evidently observed in the estimated proximity parameter /3,
which consistently decreases under both higher noise levels
and broader threat value ranges. From the properly adjusted
B estimate, the downstream Bayesian update robustifies the
inference quality under external uncertainty.

G. Computational Complexity

Finally, we evaluate the algorithm execution time versus
inference performance by varying numbers of MC tra-
jectory samples to examine the computational efficiency
and real-time applicability. First, the average execution
time per time step is evaluated across two computing plat-
forms: 1) the default experimental platform (PC 1: Ryzen
9 7950X, RTX 4090); and 2) a lower spec platform (PC 2:
15-12600KF, RTX 3070). As shown in Table XII, both plat-
forms demonstrate comparable computing performance.
Even with 2000 MC samples, the execution time per time
step remains below 25 ms, corresponding to a 40-50-Hz
update rate. Considering that typical missile defense sys-
tems’ measurement update rate is around 1 Hz [8], the pro-
posed framework successfully fulfills real-time operational
requirements.

Second, Table XIII presents the overall inference time
and success rate in Scenario 1 with respect to the different
numbers of MC samples, ranging from 500-2000. Here, the
inference performance improves up to 1500 samples, but
shows marginal improvement beyond that number. More
importantly, such marginal performance is achieved without
any issue in computation overhead, i.e., the update rate
is well above 1 Hz. Thus, the proposed algorithm can
be deployed in real-time applications without imposing a
significant tradeoff between computational efficiency and
inference performance.

V. CONCLUSION

This article presents an attack intent inference frame-
work to predict the potential attack target of the HGV.
First, a unified dynamics and decision-making model is
developed to accommodate both the dynamical feasibility
and tactical objectives of the HGV behaviors. Within this
model, the HGV probabilistically seeks the target that yields
the highest threat value in dynamically feasible regions,
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fulfilling rational decision-making. Coping with uncertain-
ties and model discrepancies arising in real-world, the
proposed framework incorporates a proximity parameter.
This parameter, alongside the potential attack target, is then
inferred using the Bayesian approach, which efficiently
updates the probability of attack intent. Numerical sim-
ulations demonstrated the effectiveness of the proposed
method, showing higher accuracy and faster convergence in
inferring the HGV’s attack intent. Future work may extend
this framework toward a comprehensive decision-making
architecture capable of modeling intricate attack strategies
in multi-HGV scenarios.
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