
11050 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 12, DECEMBER 2024

Kernel-Based Metrics Learning for Uncertain
Opponent Vehicle Trajectory Prediction in

Autonomous Racing
Hojin Lee , Graduate Student Member, IEEE, Youngim Nam , Graduate Student Member, IEEE, Sanghun Lee ,

and Cheolhyeon Kwon , Member, IEEE

Abstract—Autonomous racing confronts significant challenges
in safely overtaking Opponent Vehicles (OVs) that exhibit un-
certain trajectories, stemming from unknown driving policies. To
address these challenges, this study proposes heterogeneous kernel
metrics for Deep Kernel Learning (DKL), designed to robustly
capture the diverse driving policies of OVs, and carry out precise
trajectory predictions along with the associated uncertainties. A
key virtue of the proposed kernel metrics lies in their ability to
align similar driving policies and disjoin dissimilar ones in an
unsupervised manner, given the observed interactions between the
Ego Vehicle (EV) and OVs. The efficacy of the proposed method is
substantiated through experimental studies on a 1/10th scale race-
car platform, demonstrating improved prediction accuracy and
thereby safely overtaking against OVs. Furthermore, our method
is computationally efficient for onboard computing units, affirming
its viability in fast-paced racing environments.

Index Terms—Planning under uncertainty, integrated planning
and learning, machine learning for robot control.

I. INTRODUCTION

AUTONOMOUS racing has emerged as a significant sub-
field of autonomous driving, attracting considerable in-

terest and fostering competitions such as Roborace, Indy Au-
tonomous Challenge, and F1TENTH [1]. One of the key chal-
lenges in autonomous racing lies in safely running against OVs
and executing overtaking maneuvers. Various strategies have
been developed to address these challenges [2], [3], among
which a commonly adopted approach involves predicting the
future trajectory of OV and then planning the overtaking ma-
neuver accordingly [1].
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Fig. 1. Overtaking scenarios where the EV maximizes its progress while
taking into account the predicted trajectory distribution of the OV, which is
based on the driving policy inferred from the observed EV-OV interaction.
(a) OV exhibits non-blocking behavior, allowing the EV to navigate without
interference; (b) OV actively tries to block the EV’s progress.

Although previous studies have made strides in trajectory
prediction for autonomous racing, they still face challenges
in addressing diverse driving policies of OVs [4]. On the one
hand, physics-based prediction methods are grounded in first-
principles dynamics models. They are capable of anticipating
momentary behavior but struggle to capture the long-term inter-
actions between EV and OVs [4]. On the other hand, planning-
based prediction methods infer the OVs’ actions as solutions to
optimization problems that account for the strategic objectives of
the race and tactical interactions with the EV [2]. However, these
methods often demand intensive computation, which is critical
for fast-paced racing environments. Moreover, the prediction
performance heavily relies on the fidelity of the optimization
problem, which necessitates encoding the OV’s real objec-
tive [4]. Lastly, recent advancements in learning-based methods,
which empirically examine driving data patterns, have shown
promising results in trajectory prediction [5], [6]. Nonetheless,
data scarcity often hinders the implementation of learning-based
methods within the autonomous racing regime. Moreover, when
the encountered driving policy of the OV deviates from the
training data, the resulting predictions fall short in planning safe
maneuvers of the EV against OV [1].

This paper presents a learning-based method that can address
the diverse driving policies of OVs, thereby accurately predicting
the OV’s trajectory and further assessing the uncertainty of
prediction results (See Fig. 1). First, the one-step OV’s state
prediction model is trained from the observed interaction be-
tween the EV and OV through DKL. In detail, a multi-scale
Convolutional Neural Network (CNN) is employed to learn the
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interactions between the EV and OV, transforming the inter-
action patterns into latent representations of the OV’s driving
policy in an unsupervised manner. The represented OV’s driv-
ing policy is then processed through a Gaussian Process (GP)
model to predict the OV’s state at the next time step. Building
upon this process, we propose novel heterogeneous kernel-based
metrics whereby DKL can more adeptly ascertain driving policy
from complex interaction patterns. The proposed metrics are
particularly devised to assess the similarities across different
spaces, i.e., the latent space representing driving policies and
the output space depicting the OV’s state prediction. Then, these
metrics are optimized to render the latent space of DKL such that
similar driving policies are clustered closely, while dissimilar
ones are simultaneously spread apart. Such a strategic align-
ment improves the GP model’s ability to capture the correlation
between the driving policy and the state prediction. As a result,
the DKL model not only enhances prediction performance but
also addresses calibrated uncertainty concerning both trained
and untrained driving policies.

Next, the one-step OV state prediction model is recursively
executed to generate multi-step trajectory samples. These sam-
ples are utilized to construct the probabilistic OV trajectory
distribution, predicting the state at each time step by its mean
and variance. Subsequently, the predicted trajectory distribution
information is integrated into the EV’s Model Predictive Control
(MPC) framework as dynamic obstacle constraints. This enables
the EV to execute safe and agile overtaking maneuvers while
considering the OV’s uncertain predicted state distributions. To
the best of the authors’ knowledge, the proposed method for
the first time attempts to apply kernel-based metrics learning to
the realm of autonomous racing. Our method marks a notable
advancement in OV trajectory prediction and surpasses the
existing work in racing against OVs with diverse driving policies.
The contributions of this paper are highlighted as follows:
� A novel kernel-based metrics learning framework for DKL

is proposed, aimed at representing the diverse driving poli-
cies of OVs that are aligned with respect to their similarity.

� A probabilistic OV trajectory prediction model is devel-
oped, improving prediction accuracy and uncertainty cali-
bration based on the inferred OV’s driving policy.

� An MPC-based planning for EV maneuver is seamlessly
integrated with the trajectory prediction results, empower-
ing the EV to safely overtake the OV.

� Extensive real autonomous racing experiments with a
1/10th scale racecar demonstrate the effectiveness of the
proposed algorithm, both quantitatively and qualitatively,
compared to the existing algorithms.

II. RELATED WORK

A. Physics and Planning-Based Trajectory Predictions

Physics-based trajectory prediction methods exploit the kine-
matics and dynamics of OVs, tailored by statistical filtering
techniques [4]. However, these methods often face challenges in
long-term forecasting due to their limited understanding of the
interactions between the EV and OVs, implying a lack of consid-
eration for the underlying driving policies of OVs. To account for

the interactions, planning-based methods presume that the OVs
logically decide their actions through optimization [2]. These
methods consider OVs as rational entities seeking to maximize
their internal objectives. However, the accuracy of predictions
hinges on the coherence between the presumed objective and the
true objective of the OV. Furthermore, planning-based methods
often demand heavy computations [7], presenting a formidable
burden in fast-paced racing circumstances.

B. Learning-Based Trajectory Prediction

Recent trajectory prediction research has primarily shifted
towards learning-based methods that account for the complex
interactions involving human social behavior [5] and multiple
vehicles in urban settings [6]. Nevertheless, their applicability
degenerates when situated in autonomous racing, mostly due to
deficient datasets in both quantity (limited number of racing
scenes) and quality (lack of semantic cues) [8]. Moreover,
the diversity in driving policies across different OVs further
complicates learning the prediction model, requiring pertinent
representations of driving policies. Such a complication is fur-
ther exacerbated by imbalanced datasets (e.g., overfitting on the
dominant driving policies in the training data), making it difficult
to generalize the prediction model. In response, methods such as
meta-learning and representation learning have been explored
to address the generalization of the prediction model against
diverse driving policies [9]. These methods employ distance
metrics to capture complex data patterns and establish robust
representations for similar/dissimilar patterns, improving pre-
diction performance while reducing the risk of overfitting. While
the choice of distance metrics, such as Euclidean, cosine, and
kernel-based metrics, greatly impacts the representation model,
determining the optimal metrics for measuring similarities re-
mains an unresolved task to date [10]. Lastly, the learning-based
prediction model can be susceptible to out-of-training data distri-
bution, meaning it is prone to yield unreliable prediction results
when the encountered OV’s driving policy deviates from the
training data [11].

C. Trajectory Prediction With Uncertainty

Extensive investigation has been carried out to address uncer-
tainty in trajectory prediction [6], among which GP has gained
substantial attention due to its quantitative measure of uncer-
tainty. Taking these advantages, GP has proven its effectiveness
in cut-in behavior prediction [12], and multi-step trajectory
prediction of OV in autonomous racing [3]. Typical GP describes
the unknown function using stationary kernels, assuming that the
properties of the function are constant across all input values.
However, this often results in poor uncertainty calibration for
non-stationary stochastic processes that exhibit intricate data
patterns in practice [13]. To handle the non-stationary aspect
within GP, different techniques have been explored, such as
input-dependent parametric kernels, Deep GP, and DKL [13].
In particular, DKL leverages the non-linear mapping capability
of neural networks to transform complex non-stationary input
space into the latent feature space that can be effectively pro-
cessed with stationary kernels in GP. However, training these

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on October 16,2025 at 08:32:37 UTC from IEEE Xplore.  Restrictions apply. 



11052 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 12, DECEMBER 2024

complex kernels remains a significant challenge, as highlighted
by recent studies [14]. Addressing this issue, this paper in-
troduces a kernel-based metrics learning framework for DKL.
This framework presents heterogeneous kernels to fine-tune the
alignment of latent features transformed by the neural network,
thereby adequately embedding the non-stationary properties into
DKL.

III. PROBLEM FORMULATION

A. Vehicle Dynamics

The racing vehicles are modeled using a dynamic bicycle
model [15], where the state is represented by the vector X =
[px, py, ψz, vlon, vlat, wz]

T . This vector consists of the vehicle’s
pose in Cartesian frame, [px, py]T , the heading angle, ψz , the
longitudinal and lateral velocities, [vlon, vlat]T , and the yaw
rate, wz . The input vector u = [Fxx, δ]

T comprises the rear
longitudinal tire force Fxx and the front steering wheel angle
δ. To discretize the vehicle’s nonlinear dynamics, we apply the
4th order Runge-Kutta method with a sampling time step size
Ts. The resulting discrete-time vehicle dynamics is compactly
described as Xk+1 = f(Xk, uk), where the subscription k in-
dicates the time index. To examine the racing vehicle’s motion,
we interpret the vehicle’s pose as Frenet-Serret formulas with
respect to the racing track’s centerline [15]. Let C : R4 �→ R4

denotes the invertible operator which projects the vehicle’s
pose in Cartesian frame to the curvilinear frame. Accordingly,
the pose in curvilinear frame is denoted as c = C(p) where
p = [px, py, ψz, vlon]

T and c = [s, elat, eψ, vlon]
T . Here, s is

the distance progress along the track’s center line, elat is the
lateral offset from the center line, and eψ is the angular deviation
from the center line’s tangent. The track’s signed curvature at
any distance s ∈ [0, τ ] is represented as η(s), where τ is the
track length. To distinguish the state variables of EV and OV,
we use superscripts in notations like Xev, cev, Xov , and cov .

B. EV Trajectory Planning Problem for Racing

The EV trajectory planning problem is formulated as Model
Predictive Contouring Control (MPCC), which allows the EV
to plan its trajectory over N steps ahead at time step k, defined
as X̂ev

k:k+N = {X̂ev
k , . . . , X̂

ev
k+N}, with respect to the projected

distance progress s̄t on the centerline [15]. Further, the con-
straints of MPCC related to dynamic obstacles are augmented
to incorporate the predicted OV trajectory. Given the predicted
trajectory of the OV over N steps ahead at time step k, i.e.,
{X̂ov

k , . . . , X̂ov
k+N}, the MPCC problem for the EV is formulated

as follows:

min
u,v

N−1∑
t=0

||ec(X̂ev
t , s̄t)||2qc + ||ut||2Ru

+ ||ut − ut−1||2Rd
− qsv̄N (1a)

s.t. X̂ev
0 = Xev

k , s̄0 = sevk , u−1 = uevk−1, (1b)

X̂ev
t+1 = f(X̂ev

t , ut), t = 0, . . .., N − 1 (1c)

s̄t+1 = s̄t + Tsv̄t, t = 0, . . ., N − 1 (1d)

X̂ev
t ∈ Xtrack, ut ∈ U, t = 0, . . ., N (1e)

h(X̂ev
t , X̂

ov
k+t) ≤ 0, t = 0, . . ., N (1f)

whereu = {u0, . . ., uN−1}, v = {v̄0, . . . , v̄N−1}. v̄t represents
the progression rate, and ec measures the approximated pro-
jection errors between X̂ev

t and the reference centerline at s̄t
[15]. The objective cost (1a) conceives of maximizing the race
progress while penalizing the centerline deviation according to
weighting parameters, qc, qs > 0. To ensure a smooth control
profile, cost minimizes the magnitude and rate of the input
with the weights Ru and Rd � 0, respectively. The dynamics
of the EV is governed by (1c) and (1d). In (1e), Xtrack =
{X| −Wtrack/2 ≤ elat ≤Wtrack/2} andU represent the con-
straints imposed by the track boundary and the control input
limits, where Wtrack is the track width. The constraint in (1f)
ensures collision avoidance, given that the predicted OV state
forms a probability distribution, such as Gaussian distribution
X̂ov
k+t ∼ N (μ(X̂ov

k+t), σ
2(X̂ov

k+t)). In constructing (1f), the EV’s
safety margin is drawn as a collection of four circles, while an
ellipse represents the OV’s margin. To accommodate the uncer-
tainty encoded in the predicted state distribution X̂ov

k+t, the size
of the OV’s ellipse is dynamically adjusted in proportion to its
variance, σ2(X̂ov

k+t). Detailed derivation for the ellipse size can
be found in Section IV of [3], which is omitted here for brevity.
Notably, the ellipsoidal safety margin is widely adopted due to
its effectiveness in capturing Gaussian-distributed uncertainties
in the predicted OV state and its computational efficiency in
solving nonlinear MPC problems [16].

C. GP and DKL for OV Trajectory Prediction

To predict the OV trajectory which is implicated in the patterns
of both EV and OV states, we employ a GP Regression (GPR)
model to be trained using the EV-OV interaction dataset. GPR
is a non-parametric Bayesian regression that embeds a GP,
characterized by a mean functionm(·) and a covariance function
κ(·, ·), commonly referred to as a kernel. Typically assuming a
zero-mean GP prior for simplicity, the posterior distribution of
GPR is given by f̂(x) ∼ N (m̄(x), σ̄(x)) where m̄(x) and σ̄(x)
represent the posterior mean and covariance functions calculated
from the training data, respectively.

In this paper, we adopt the Mat é rn kernel, κ(x, x′), which
has proven to be effective in the autonomous driving domain [3],
[12]. Mat é rn kernel, however, is a stationary kernel that may
be insufficient to capture the complex patterns in the trajectories
of different OVs with diverse driving policies. To address this,
DKL applies a non-linear transformation to the input space and
utilizes the same stationary kernels for the transformed space,
namely feature space. Accordingly, the kernel in DKL can be
reformulated as:

κ̄(x, x′) = κ(Φ(x),Φ(x′))

where Φ : Rn → Rn′
denotes the transformation function de-

signed as a neural network, mapping inputs to feature space.
However, learning the optimal design of Φ in an unsupervised
manner is challenging due to complex EV-OV interactions that
yield diverse OV driving policies.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on October 16,2025 at 08:32:37 UTC from IEEE Xplore.  Restrictions apply. 



LEE et al.: KERNEL-BASED METRICS LEARNING FOR UNCERTAIN OPPONENT VEHICLE TRAJECTORY PREDICTION IN AUTONOMOUS RACING 11053

Fig. 2. Architecture of the proposed algorithm: (a) The training process of the one-step state prediction model, which utilizes the proposed kernel-based metrics
learning for DKL; and (b) an autonomous racing algorithm for EV, which plans its maneuver based on the predicted trajectory distribution of OV.

IV. ALGORITHM DEVELOPMENT

A. Algorithm Overview

In this section, we introduce the main algorithm to predict the
trajectory distributions of OVs. First, the one-step OV state pre-
diction model is developed using DKL, which is trained on the
EV-OV interaction dataset. Then, we introduce a DKL training
framework where novel kernel metrics are employed to address
the diversity of OV driving policies. Based on the trained DKL,
a sampling-based method is applied to the one-step prediction
model to yield a multi-step predicted trajectory distribution. The
overall training and deployment phases of the proposed OV
trajectory prediction are outlined in Fig. 2.

B. One-Step OV State Prediction Using DKL

To model the one-step state prediction of the OV, we employ
DKL, whose input is the past trajectories of both EV and OV,
signifying their interaction patterns over a high-dimensional
space. The input for the DKL at time step k is formulated as
a sequence zk−M :k = [zTk−M , . . . , z

T
k ]
T ∈ R10×M , where M

denotes the sequence length that records the past interactions,
including the current states of EV and OV. Specifically, the vector
zk includes the state information of both vehicles along with
track geometry, defined as:

zk=
[
(sovk − sevk ), eovlat,k, e

ov
ψ,k, v

ov
lon,k, e

ev
lat,k, e

ev
ψ,k, v

ev
lon,k, η̃

ov
k

]T
where η̃ovk = [η(sovk ), η(sovk + ζ), η(sovk + 2ζ)]T ∈ R3 repre-
sents the vector of track curvatures at look-ahead distances
sovk + iζ, i = 0, 1, 2with some offset ζ > 0. Notably, the vector
zk is crafted to capture the interaction between the EV and
OV, specifically contextualized within the racing track geom-
etry. This facilitates a more accurate description of interaction
patterns relative to the track layout, rather than relying solely on
the absolute global pose.

The DKL transforms the input into the feature space, repre-
senting the OV’s latent driving policy as follows:

φ̂ovk := Φ(zk−M :k) (2)

where Φ : R10×M → RL is a nonlinear mapping function that
encodes the interaction history between EV and OV over the
past M steps. By this definition, Φ is designed to map differ-
ent EV-OV interaction patterns to OV driving policies. In this
paper, we implement Φ as a neural network model trained on
racing data against various OVs. Consequently, the resulting φ̂ovk
exhibits “diverse driving policies” that arise from the different

interaction patterns of the OVs. In pursuit of extracting an
informative policy representation from the interaction data, we
adopt a multi-scale encoder architecture as detailed in [10]. This
architecture employs multi-filters with varying kernel sizes to
capture both global and local interaction patterns, utilizing 1D
causal convolution layers to preserve only the causal relation-
ships in the data sequence. Subsequent to the multi-filtering, the
final layers average the outputs of different kernel sizes, resulting
in a comprehensive representation of the interaction patterns.

Subsequently, the driving policy φ̂ovk inputs into GPR to
predict the uncertain state propagation of the OV at the next
time step, expressed by the following output vector:

yk =
[
sovk+1 − sovk , e

ov
lat,k+1 − eovlat,k,

×eovψ,k+1 − eovψ,k, v
ov
lon,k+1 − vovlon,k

]T
This one-step state difference yk ∈ R4 is modeled as unknown
stochastic processes g as follows:

yk = [y
(1)
k , y

(2)
k , y

(3)
k , y

(4)
k ]T = g(Φ(zk−M :k))

Without loss of generality, we assume the individual output
elements y(1), y(2), y(3), and y(4) are independent of each other.
Then, the GPR produces a probability distribution for each
output element y(n) as follows:

y(n) = g(n)(Φ(zk−M :k))

∼ N
(
μ(n)(Φ(zk−M :k)), (σ

(n)(Φ(zk−M :k)))
2
)

where μ(n) and (σ(n))2, n = 1, . . . , 4, represent the posterior
means and variances, respectively. It is noted that the obtained
variances of the GPR capture the epistemic uncertainty, primar-
ily emerging from the diversity of OVs’ driving policies, as well
as aleatoric uncertainty stemming from measurement noise.

C. Kernel-Based Metrics Learning for DKL

In this section, a novel training framework for DKL is intro-
duced. The DKL is typically optimized in regard to the negative
log marginal likelihood loss, Lmll. However, solely optimizing
Lmll is prone to overfitting and often yields suboptimal perfor-
mance during testing [14]. To address this challenge, we incor-
porate additional regularization to better align the latent driving
policies, φ̂ovk , computed by the neural network transformation,
Φ. Central to our approach is the strategic clustering of similar
latent driving policies while distancing dissimilar ones, based on
the similarities in the output space, i.e., OV’s state differences.
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Fig. 3. Impact of latent space alignment on DKL prediction model: (Left)
Without latent space alignment, (Right) With latent space alignment achieved
by clustering similar features and dispersing dissimilar ones.

Fig. 3 illustrates the impact of alignment in latent driving
policies on the performance of GPR given the same stochastic
unknown processes. In the left subfigure, the input and output ar-
rangement is disorganized, leading to increased susceptibility to
overfitting and difficulties in training a GPR. Such a poor align-
ment eventually degrades the prediction model. In contrast, the
right subfigure demonstrates a strategically aligned arrangement
of latent driving policies, mirroring similarities observed in the
output space. This, in turn, ensures that the driving policy φovk is
robustly represented, enabling the trained OV state propagation
model, g, to accurately predict the output yk from φovk , even
when φovk is influenced by variations or uncertainties in the input
zk−M :k. As a result, this alignment reduces the risk of overfitting
and improves robustness by minimizing sensitivity to input
variations, thereby enhancing overall prediction performance.

To align the latent driving policies, we introduce a distance-
matching loss term denoted as Ldist to minimize the dissim-
ilarity between the distances in the pair of latent features and
the distances in the pair of outputs. This loss for a mini-batch
D = {φ̂ovi , yi}i∈[1:D] can be written as:

Ldist = 1

D

D∑
i 	=j

||κΦ
(
φ̂ovi , φ̂

ov
j

)
− κy(yi, yj)||2 (3)

where D is the size of the mini-batch. κΦ and κy are Matérn
kernels, the same type of kernel used in GPR. The prediction
model regularized by (3) enforces the data to be aligned in the
relevant distance.

On the other hand, the extent of alignment is strongly subject
to the hyperparameters of κΦ and κy , i.e., lengthscales lΦ and
ly , respectively. These hyperparameters directly influence the
representation of data, thereby affecting the alignment of latent
features. For instance, a smaller lengthscale in the kernel in-
creases its sensitivity to small differences between data, causing
them to be treated as significantly dissimilar. Conversely, a
larger lengthscale reduces this sensitivity, allowing for a broader
margin to identify similarities among distanced data. To find
the best lengthscales for enhanced clustering of similar data and
dispersion of dissimilar ones in latent space, we adjust the kernel
sensitivity: decreasing it in the latent space, κΦ, to widen the
distribution of dissimilar data, while increasing it in the output
space, κy, for precise capture of data differences. This dual
regularization is facilitated by introducing a sensitivity loss as

Fig. 4. Alignment in latent space with varying kernel lengthscales: (Left)
ly < lΦ, (Right) ly > lΦ.

follows:

Lsense = ln

(
ly
lΦ

)
+ max(0, w1(σsense(φ̂

ov)− α)) (4)

where w1 and α denote the predefined weight and the thresh-
old, respectively. The second term in (4) prevents excessive
divergence in the latent space, where the standard deviation of
the latent features of the batch data, i.e., {φ̂ovi |i ∈ 1, . . . , D},
is denoted as σsense(φ̂ov). Fig. 4 graphically visualizes the
effectiveness of the proposed regularization by (4). Here, the
left-hand side illustrates the preferred scenario in which the
different latent driving policies are more widely dispersed across
various data.

Incorporating all the aforementioned loss terms, DKL is
trained to optimize both the neural network and the GP’s hy-
perparameters by minimizing the following composite loss:

LDKL = Lmll + w2Ldist + w3Lsense (5)

wherew2 andw3 are scaling constants. In a nutshell, our distinct
novelty lies in the inclusion of both Ldist and Lsense in DKL.
While Lmll addresses the nominal DKL model for prediction,
Ldist is essential for appropriately aligning the latent driving
policies and Lsense is for fine-tuning of kernel sensitivity. With-
outLsense, kernel-based metrics for both output and latent space
may exhibit reduced sensitivities, undermining the clustering
efficacy intended byLdist. It is to be noted that Ldist andLsense
are mutually complementing each other to achieve the latent
feature alignment. Therefore, their interdependency obviates the
need for an ablation study of each loss term individually.

D. Sampling-Based Multi-Step OV Trajectory Prediction

The one-step OV state prediction model, trained by the pro-
posed DKL framework, is used to predict the OV trajectory over
the N step horizon. The basic idea of this multi-step prediction
is consecutively executing one-step predictions over future time
steps, considering not only the past interaction history but also
future interaction. This requires the predicted EV trajectory,
X̂ev
k:k+N−1, which can be obtained from the open-loop solution

to (1) for the EV motion planning at k − 1 time step.
Analytically computing the solution to the multi-step pre-

diction model is intractable in general [3]. To address this, we
utilize a sampling-based approach with Q samples to estimate
the multi-step state propagation of the OV. Subsequently, we
calculate the statistics of these samples to derive the nominal
trajectory prediction along with its variances. Specifically, for
the ith sample, starting at time step k, we sample OV states at
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Algorithm 1: Multi-Step Trajectory Prediction With DKL.
Set: Prediction horizon length N and the number of
samples Q.

Input : Current EV and OV states, cevk and covk ; EV’s
predicted states, X̂ev

k:k+N−1; interaction history between
EV and OV, zk−M :k.

1: cov,ik = covk , zik−M :k = zk−M :k, ∀i = 1, . . . , Q
2: for i = 1, . . . , Q do
3: for t = 0, . . . , N − 1 do
4: Compute φ̂ov,ik+t in (2) given zik−M+t:k+t

5: Sample yik+t ∼ N (μ(φ̂ov,ik+t), σ
2(φ̂ov,ik+t)) with GP

6: cov,ik+t+1 = cov,ik+t + yik+t
7: if t < N − 1 then
8: Update zik−M+t+1:k+t+1 given X̂ev

k+t+1, covk+t+1

9: end for
10: end for
11: for t = 1, . . . , N do
12: Compute covk+t and Σovk+t by (6)
13: end for
14: Output : covk+t,Σ

ov
k+t ∀t = 1, .., N

time step k + 1 as cov,ik+1 using one-step prediction. Given the
predicted states of the EV and OV, we construct zik+1 along
with the track information. This vector is used to update the
input to the one-step prediction model at the next time step,
zik−M+1:k+1. We then continue to roll out the consecutive steps
for multi-step prediction, repeating overN steps, resulting in the
set of multi-step samples, {cov,ik+t| i = 1, . . . , Q, t = 1, . . . , N}.
Correspondingly, the predicted trajectory distribution at each
future time step, k + t, is defined by its mean, covk+t, and covari-
ance, Σovk+t, calculated as follows:

covk+t =
1

Q
ΣQi=1c

ov,i
k+t

Σovk+t =
1

Q− 1
ΣQi=1

(
cov,ik+t − covk+t

)(
cov,ik+t − covk+t

)T
(6)

Lastly, the prediction outcomes are utilized to define collision
avoidance constraints, as formulated in (1f), ensuring safe and
agile racing maneuvers of EV. The detailed procedure is de-
scribed in Algorithm 1.

V. HARDWARE EXPERIMENTS

A. Experiment Setup

The EV and OV are built on the 1/10th scale racecar shown in
Fig. 5. To assure reliable real-time execution, the EV utilizes a
Jetson AGX Orin, while the OV operates efficiently with a Jetson
Orin NX. In terms of software configuration, both vehicles
operate with ROS Noetic. They utilize the Cartographer [17] to
perform local pose estimation within a shared map common to
both the EV and OV. The state estimation involves a customized
estimator based on GTSAM [18]. Instead of detecting and
tracking the states of other vehicles using sensor measurements,
the EV and OV exchange their own state estimates via ROS

Fig. 5. 1/10th scale racing experiments setup. L-shape racing track and the
vehicles’ specifications.

topics. Both the EV and OV solve optimal control problems
using the FORCESPRO Nonlinear Interior-Point solver [19]
through code generation. Additionally, DKL is implemented
within the PyTorch framework, incorporating variational GPR
from GPyTorch [20]. Control operations are executed at 20Hz,
while multi-step trajectory predictions are performed at 10Hz.

B. Diverse Driving Policies of Opponent Vehicles

The baseline driving policy for both the EV and OV is
established by the MPCC formulation in (1) with a planning
horizon of N = 12 and the sample time of Ts = 0.1s . To
facilitate overtaking maneuvers and ensure close interaction
between vehicles, longitudinal speed constraints of 1.9m/s for
the EV and 1.6m/s for the OV are imposed, respectively.

OV driving policies are designed to interact with the EV in
two different manners: through direct blocking maneuvers (i.e.,
aggressive driving policy) or by focusing solely on minimal
lap time without blocking (i.e., passive driving policy). The
implementation of the OV’s aggressive driving policy, as out-
lined in [3], actively obstructs the EV by minimizing the lateral
distance between the OV and EV. This is achieved by including
the blocking weights in the cost function (1a). Conversely, the
passive driving policy is implemented by omitting the collision
avoidance constraints in (1f) and not incorporating the blocking
weights, thus disregarding any interactive maneuvers with the
EV.

To train the prediction model, two datasets, Daggr and Dpass,
are collected to capture the interaction with OVs under these
two different driving policies: aggressive and passive, respec-
tively. For our one-step OV state prediction model, we set
the dimension of the latent driving policy to L = 11 and the
observed interaction sequence length to M = 10. The weights
in (4) and (5) are tuned as w1 = 2, w2 = 1, and w3 = 0.05.
The training, validation, and test datasets are constructed using
samples that are randomly pooled fromDaggr andDpass without
any annotations. Finally, for the multi-step prediction model, we
set the number of samples in generating the predicted trajectory
distribution to Q = 25.

C. Racing Results and Discussion

Extensive experiments are carried out to assess the prediction
performance of the proposed method and further validate its
effectiveness in head-to-head racing, particularly in terms of
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Fig. 6. Snapshots of EV racing maneuvers against OV with passive (a,c,e,g,i) and aggressive (b,d,f,h,j) driving policies. Black solid lines represent the track bound-
aries. A comprehensive video demonstration of the hardware experiments is accessible at https://github.com/HMCL-UNIST/OpponentPredictionWithKMDKL.git.

overtaking maneuvers. For comparative analysis, we evaluate
our multi-step trajectory prediction method versus five distinct
baseline trajectory predictors. The first baseline, referred to
as NMPC (a.k.a Ground Truth, GT), utilizes a planning-based
nonlinear MPC predictor. This method employs the open-loop
solution to the OV’s MPCC problem, serving as the ground
truth prediction from the OV’s perspective. The second baseline,
denoted as Constant Angular Velocity (CAV), is a physics-based
prediction method that propagates the OV’s current state under
constant linear and angular velocity assumptions. The third
baseline, DNN, adapted from [6], is a deep learning-based
method originally developed for urban environments. The input
is modified to include EV and OV state histories and track
information, i.e., zk−M :k. Additionally, the output provides the
mean and variances of the multi-step predicted state propagation,
which are matched with the output of Algorithm 1 for a fair
comparison with other baselines. The fourth baseline, denoted as
GPR, adapted from [3], is a learning-based method that employs
GPR with a stationary Mat é rn kernel to predict the multi-step
trajectory together with its associated uncertainties. This method
utilizes the current driving scene information only, i.e., zk.
Consequently, it faces limitations in capturing the interaction
patterns between the EV and OV that are influenced by OV’s
driving policy. The fifth baseline denoted as DKL, represents an
ablation version of our proposed method. It utilizes the same
architecture as the one-step prediction model but omits the
proposed kernel-based metrics learning. This is more or less
nominal DKL that solely aims at maximizing the log marginal
likelihood of observations, i.e., Lmll. Lastly, our proposed
method, incorporating a novel kernel-based metrics learning as
in (5), is referred to as KM-DKL. Unlike the other methods
that provide prediction results as trajectory distributions, CAV
and NMPC (GT) predictors provide deterministic trajectories,
lacking a probabilistic measure of prediction confidence. For the
sake of fair comparison concerning uncertainty quantification
ability, we set a fixed circular boundary to their prediction
results.

The experiment involves twenty races for each baseline
method. The OV is placed in various starting positions, which
remain the same for all predictors. Each race concludes once
the EV completes three laps or if a major collision occurs that
drastically changes the course of both cars, making it impossible

Fig. 7. Histograms of the negative log-likelihood for prediction results in races
against OVs exhibiting unseen driving policies.

to continue the race. For each race, we set the OV’s driving
policy to either passive or aggressive, resulting in ten races for
each policy. The prediction performance is then evaluated by
the mean square errors of longitudinal and lateral poses between
predicted and actual trajectories at the last prediction step when
the EV is in the proximity to the OV, i.e., 0 ≤ sov − sev ≤ 2.

Notably, given the result statistics detailed in Table I and the
prediction snapshots in Fig. 6, our method surpasses all the base-
lines in lateral prediction accuracy, with NMPC(GT) achieving
the lowest longitudinal mean error. Even though NMPC(GT)
anticipates the ground truth open-loop solution from OV’s per-
spective, it fails to capture the multi-step ahead closed-loop
interactions between EV and OV in real racing. GPR’s prediction
surpasses the physics-based CAV method, yet struggles to adapt
to different OV driving policies, leading to a higher risk of
collisions due to misapprehension of the driving policy, e.g.,
blocking as a non-blocking policy and vice versa. Similarly,
DKL and DNN falls short of capturing the interactions between
EV and OV, resulting in a higher collision rate compared to
KM-DKL. In contrast, our KM-DKL, with its prediction ability
against different OV driving policies, facilitates agile and safe
overtaking maneuvers without major collisions. Furthermore,
computational complexity is evaluated using the average com-
putation time in milliseconds. Although our method requires
more computation time compared to other baselines, it meets the
10 Hz real-time requirement, making it feasible for high-speed
autonomous racing.

D. Ablation Study for Unseen Driving Policy

To further investigate the virtue of our method, we examine the
uncertainty calibration performance of the proposed KM-DKL
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TABLE I
RACING RESULT STATISTICS AGAINST OVS WITH DIVERSE DRIVING POLICIES

model compared to the nominal DKL, the ablated version of our
model. This involves evaluating the prediction model against
out-of-training-distribution scenarios, specifically when the en-
countered OV’s driving pattern is not included in the training
dataset, i.e., unseen driving policies. To create the unseen driving
policy, we introduce a cooperative driving policy designed to
yield the pathway to the EV. We realize this policy by modifying
the aggressive driving policy’s cost with the reversed sign of the
blocking weight. This encourages the OV to move away from
the EV’s anticipated path during the race.

We carry out the experiment in a similar fashion to the afore-
mentioned racing setup but with the unseen OV driving policy.
The prediction models, DKL and KM-DKL, are evaluated in
terms of the Negative Log-Likelihood (NLL) concerning the
predicted OV pose at the last prediction step. NLL quantifies the
likelihood of the predicted state given the observed data, with
lower values indicating more accurate uncertainty calibration
to unseen data [21]. Fig. 7 indicates that KM-DKL achieves
lower NLL values than the DKL predictor. This demonstrates
our method’s improved uncertainty calibration, highlighting the
advantages of incorporating kernel metrics learning into DKL.

VI. CONCLUSION

This study has developed a learning-based OV trajectory
prediction model and downstream EV planning framework for
autonomous racing against OVs with diverse driving policies.
The key idea is to introduce novel heterogeneous kernel met-
rics and embed them into the learning pipeline of DKL. The
prediction model is then learned in an unsupervised manner
based on the EV-OV interaction dataset, adeptly differentiating
the diverse driving policies. Compared to existing work, the
proposed method enhances prediction accuracy and improves
uncertainty calibration, which is instrumental for the safe and
agile trajectory planning of EV. This has been validated on a
1/10th scale racecar platform, where the experimental results
have shown better-calibrated prediction errors, lower collision
rates, and higher overtaking success rates. Future work will
focus on: i) online learning and adaptation of the algorithm
to streaming data from EV-OV interactions; and ii) scaling the
method to full-scale vehicles, addressing perception errors and
multi-vehicle interactions in real-world racing.
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