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Abstract

This paper concerns the optimality problem of distributed linear quadratic control in a
linear stochastic multi-agent system (MAS). The main challenge stems from MAS net-
work topology that limits access to information from non-neighbouring agents, imposing
structural constraints on the control input space. A distributed control-estimation synthe-
sis is proposed which circumvents this issue by integrating distributed estimation for each
agent into distributed control law. Based on the agents’ state estimate information, the dis-
tributed control law allows each agent to interact with non-neighbouring agents, thereby
relaxing the structural constraint. Then, the primal optimal distributed control problem is
recast to the joint distributed control-estimation problem whose solution can be obtained
through the iterative optimization procedure. The stability of the proposed method is ver-
ified and the practical effectiveness is supported by numerical simulations and real-world
experiments with multi-quadrotor formation flight.

1 INTRODUCTION

Multi-agent systems (MASs) have gained substantial attention
due to their applications in various domains, such as surveil-
lance [1], formation of mobile vehicles [2], production process
management [3], power grids [4], etc. These systems involve
interconnected sub-components collaborating to achieve global
objectives [5–7]. One of the key enabling techniques for MASs
is distributed control, emphasizing interactions among neigh-
bouring agents to coordinate with each other instead of relying
on a central supervisory control [6, 8–10].

While extensive research has explored different variants of
distributed control problems, including communication delays
[11, 12], data transmission overhead [13], uncertain agent
dynamics [14–18], and stochastic characteristics [19], the quest
for an optimal distributed control law for MAS remains unre-
solved. Especially, the network topological constraint limits the
information available to each agent, making it challenging to
design optimal control laws. It is worth noting that optimal con-
trol laws subject to such constraints may not be linear even
for linear MAS dynamics under Gaussian noise and quadratic
cost, and that the optimal distributed control problem may be
non-convex [20].
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To ease this challenge, some have attempted to find optimal
solutions tailored to specific classes of MAS control problems
in terms of cost functions [21–25], network topology [26–29],
and system dynamics [30, 31]. However, these approaches
lack applicability to general MAS control problems, especially
when dealing with predefined global costs or network topo-
logical constraints that do not conform to the specifications
for finding tractable optimal solutions. Alternative approaches
have been proposed with the goal of deriving suboptimal solu-
tions [32–41]. In addition, certain researchers have chosen to
focus solely on individual agents’ local cost functions, with-
out considering the global objective [42–45]. Consequently,
these approaches compromise the global performance of the
entire MAS.

Another line of work has pivoted towards reformulating the
optimal distributed control problem into a convex optimiza-
tion problem [46–48]. Various parameterization techniques,
such as Youla [49], system-level [50], and input–output [51]
methods, have been studied to accommodate the topolog-
ical constraint within the convex formulation. Notably, the
quadratic invariance (QI) condition has been established, under
which the problem can be formulated as a convex problem
[52, 53]. Nonetheless, the QI condition restricts the types of
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solvable problems, leaving the non-QI MAS cases difficult to
address. To tackle the broader class of problems beyond the
QI cases, various conditions have been established to enable
tractable solutions for non-QI cases [54, 55], or approxima-
tion strategies have been developed to relax the condition [47,
48]. Despite all these attempts, navigating the complexities
of the general class of MAS problem remains a formidable
challenge.

To circumvent the network topological constraints, other
approaches suggest utilizing distributed estimators to aug-
ment information access for individual agents. This empowers
agents to estimate beyond their neighbours, thereby enabling
distributed control based on the estimated information. Sev-
eral distributed estimators have been employed for this idea,
but they have not adequately addressed the optimality of dis-
tributed control laws [56–58]. Tackling the optimal distributed
estimation-based control, [59] has leveraged information-
sharing via network communication, based on which optimizes
the control law referring to the state estimates from a series of
intermediate communication steps. As the number of interme-
diate communication steps increases, the resulting control law
gradually converges towards the optimal solution of a central-
ized MAS control problem without any network topological
constraints, but at the cost of excessive communication over-
head. On the other hand, [60] has explored the multi-hop
communication scheme, and addressed the necessary multi-hop
conditions whereby the estimation and control problems can
be conceived independently. However, applicability diminishes
when communication fails to meet these conditions, leading
to intertwined and inseparable distributed estimation-based
control problems. Hence, even with the aid of distributed esti-
mation, the optimal distributed control in general MAS remains
an open question to date.

This paper elaborates on the distributed estimation-based
control to fulfill the quadratic cost for stochastic linear MAS
over an infinite-time horizon. Unlike earlier approaches in dis-
tributed estimation-based control that separate the estimation
and control problems [59, 60], our work tackles an inter-
twined control-estimation problem without imposing specific
conditions on network topology or MAS dynamics, extend-
ing beyond existing works that are only valid for specific
network structures or predefined cost functions [21–31]. Con-
sidering the fact that the design of the distributed estimator
is influenced by the distributed control design and vice versa,
an iterative optimization procedure is introduced to design
distributed linear control and estimation laws. Notably, the pro-
posed method only requires individual agents to measure their
immediate neighbours, without relying on additional commu-
nication capabilities, such as multi-intermediate or multi-hop
communications. This significantly reduces the communication
overhead and is beneficial in environments with limited or
restricted communication, improving practicality and efficiency
in real-world MAS operations.

It is noted that this study builds upon our prior works
[61–63]. Initially, we have introduced a distributed estimator that
augments its estimation range beyond its neighbour based on

distributed control law information [61]. Subsequently, in [62],
we have developed distributed control laws that utilize non-
neighbouring estimation information, although the intertwined
nature of control and estimator design was not addressed.
Lastly, [63] has sought to jointly design distributed control
and estimation laws. However, this work merely provided the
methodological idea without theoretical rigor and lacked prac-
tical efficacy, since the solution is given for the finite horizon
problem. Motivated by these limits, this paper further enhances
the distributed control and estimation laws by addressing the
infinite horizon solution along with the theoretical stability
guarantee. The key contributions of this paper include the
following:

1. Transforming the optimal distributed control problem
into a distributed control-estimation synthesis prob-
lem for stochastic linear MAS under limited network
connectivity.

2. Developing an iterative optimization framework to design
steady-state gains for the distributed control and distributed
estimator over an infinite horizon.

3. Theoretically verifying the stability of the proposed dis-
tributed control and estimation laws.

4. Demonstrating the effectiveness and practical virtue of
the proposed method by conducting Monte Carlo simula-
tions and real-world experiments involving multi-quadrotor
formation flight.

The rest of the paper is structured as follows: Section 2
formulates the infinite-horizon distributed control-estimation
problem based on the dynamical MAS model and the cost func-
tion to be optimized. Section 3 develops the main algorithm to
optimize the control and estimator gains for each agent along
with the theoretic guarantee for its stability. The numerical sim-
ulation and the real-world experiment of the proposed method
are presented with the multi-quadrotor formation flight in Sec-
tions 4 and 5, respectively. Conclusions and future works are
given in Section 6.

Notation. The set of real and natural numbers are denoted
as ℝ, ℕ, respectively. The expectation of the random variable
x is represented as 𝔼[x]. Conditional expectation of x given y

is represented as 𝔼[x|y]. The Kronecker product of matrices is
symbolized by ⊗. An identity matrix of size p × p and a zero
matrix of the same size are represented as Ip and 0p, respec-
tively. A vector with all entries equal to 1 is written as 1p ∈ ℝ

p.
Mi = [0p⋯ Ip⋯ 0p] ∈ ℝp×Np denotes the block matrix that
contains an ith block filled with Ip, while other block entries
are set to 0p. blkdg(D1, … ,Dn ) and diag(d1, … , dn ) respectively
represent a block-diagonal matrix with blocks D1, … ,Dn and
a diagonal matrix with entries d1, … , dn. The trace of a matrix
D is denoted as Tr (D). For a symmetric matrix X = X T, we
use X ≻ 0 and X ⪰ 0 to denote positive definite and posi-
tive semidefinite, respectively. ‖ ⋅ ‖

F
represent the Frobenius

norm. The spectrum of a matrix ∙ is denoted as spec (∙). The
null space of a matrix ∙ is represented as  (∙). (S )⊥ signifies
the orthogonal complement of set S .
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2 PROBLEM FORMULATION

2.1 Stochastic multi-agent system dynamics
model

We consider a MAS comprised of N homogeneous agents,
where the stochastic linear time-invariant dynamics of an
individual agent is described by

xi (k + 1) = Axi (k) + Bui (k) + wi (k), ∀i ∈ {1, … ,N }, (1)

where xi ∈ ℝ
n and ui ∈ ℝ

p are state and the control input of
the ith agent, respectively. The disturbance in the dynamics, wi ,
is modelled by the Gaussian noise with zero mean and covari-
ance matrix Θi ≻ 0. k ∈ ℕ is discrete-time index. Without loss
of generality, the matrix pair (A,B) satisfies the controllability
condition. By concatenating the states of individual agents, the
dynamics of the entire MAS can be represented by

x(k + 1) = Ãx(k) + B̃u(k) + w̃(k), (2)

Ã = (IN ⊗ A), B̃ = (IN ⊗ B),

x(k) =
[
xT

1 (k)⋯ xT
N

(k)
]T
, u(k) =

[
uT

1 (k)⋯ uT
N

(k)
]T

w̃(k) =
[
wT

1 (k)⋯ wT
N

(k)
]T
.

Apart from the MAS dynamics, network topology is repre-
sented as a directed graph model [5]. Agents are vertices in the
set  = {1, 2, … ,N }, connected by edges  ⊆  ×  . The adja-
cency matrix  = [ai j ] ∈ ℝ

N×N denotes the entire network
connectivity, where ai j = 1 if (i, j ) ∈  , and ai j = 0 otherwise.
We also define the degree matrix  = diag(

∑
j a1 j , … ,

∑
j aN j )

and the Laplacian matrix  =  −. The neighbours of the ith

agent are denoted as a setΩi , and its cardinality is represented by|Ωi |. With the given network connection, the ith agent obtains
noisy measurements from its neighbours as follows [61]:

zi j (k) = ai j

(
x j (k) + vi j (k)

)
, ∀ j ∈  , (3)

where vi j is white Gaussian noise with covariance Ξi j ≻ 0.
The coefficient ai j in (3) indicates the availability of the
measurement of the j th agent’s state from the ith agent’s per-
spective. The noisy measurement zi j can be obtained either
through on-board sensors employed by the agents or, alterna-
tively, via communication. For example, in robotic applications,
each agent can transmit its position measurement to neigh-
bouring agents through communication, while on-board radar
sensors measure the velocity of neighbouring agents. Both
measurements are susceptible to errors due to environmental
uncertainties or inherent sensor quality, and these errors are
reflected in the noise term vi j . Besides, the set of measurements
and noises acquired by the ith agent are denoted by Zi (k) =[
zT

i1(k)⋯ zT
iN

(k)
]T

and vi (k) =
[
vT
i1(k)⋯ vT

iN
(k)

]T
, respectively.

It is noted that Zi is a concatenation of zi j , j ∈  , measuring
all agents’ states in the MAS from the ith agent’s perspective.

Therefore, only the measurements for neighbouring agents have
valid values, while those for non-neighbouring agents are set
to zeros. Then, agents interact with their local neighbourhoods
based on the following output feedback control law [38]:

ui (k) = MiFZi (k), ∀i ∈  , (4)

where F ∈ 𝔽 represents the steady-state control gain, and
subspace 𝔽 ⊆ ℝNp×Nn represents the structural constraints
enforced by the MAS’s network topology. Note that the feed-
back control law (4) forms in a linear structure, necessitating
more system conditions to grant the global optimum [64]. In
this paper, we confine our examination to this linear structure
due to its extensive utilization in distributed control [37, 59].

2.2 Distributed control-estimation synthesis
problem

The optimal distributed control problem for the stochastic MAS
model can be formulated as follows.

Problem 1. Infinite-horizon optimal distributed linear control
law subject to network topological constraint.

min
F∈𝔽

lim
T→∞

1
T

T∑
k=0

𝔼
[
xT(k)Qx(k) + uT(k)Ru(k)

]
subject to (2), and (4), ∀i ∈ 

where Q ∈ ℝNn×Nn ⪰ 0 is a weight matrix that governs the
relative state coordination between agents. It can be used to
measure the state differences between neighbouring agents, or
extended to capture the differences between non-neighbouring
agents as well. R ∈ ℝNp×Np ≻ 0 is the associated weight matrix
used to scale the input cost. This quadratic cost function is com-
monly employed to represent various inter-agent behaviours in
MAS, including consensus [65], formation [2], rendezvous [66],
and so on.

Problem 1 is subjected to topological constraints that embed
the structural constraints into the gain matrix subspace 𝔽, mak-
ing the problem non-convex [36]. To address the complexity
due to topological constraints, we employ the concept of ‘vir-
tual interaction’. This employs the estimation-based feedback
control, facilitated by the distributed estimator proposed in
[61]. The key idea is to allow agents without network connec-
tions to act as if they could share information and interact
with each other. Subsequently, the concept of a ‘virtual network
topology’ is introduced to describe the connections formed
through these virtual interactions, regardless of the actual net-
work topology in MAS (See fig. 1 of [63]). Leveraging the
proposed distributed estimators, individual agents can estimate
the entire MAS state, including agents not connected through
the actual network topology, using only neighbouring mea-
surements. These estimates, incorporating both neighbouring
and non-neighbouring agents’ states, allow each agent to apply
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FIGURE 1 Control-estimation laws design procedure.

estimation-based control. This process enables agents to inter-
act beyond their immediate neighbours by utilizing the estimates
of non-neighbouring agents’ states, which we refer to as virtual
interactions. Accordingly, the virtual network topology refers
to the connections established by these virtual interactions
between agents. This demonstrates that the virtual network
topology is not a topological constraint but rather a design
choice.

Definition 1. Given the distributed estimator embedded
in each agent, the state estimate of the MAS from the ith

agent’s perspective is denoted as i x̂(k) ∶= 𝔼
[
x(k)|Zi,(0∶k)

]
,

where Zi,(0∶k) = {Zi (t )| t = 0, … , k} represents measure-
ments up to time step k. The corresponding estimation error
covariance is represented as iiΣ(k) ∶= 𝔼

[
i e(k) i e(k)T|Zi,(0∶k)

]
,

where i e(k) ∶= x(k) − i x̂(k) is the estimation error. Addi-
tionally, the predicted state estimate and its estimation
error covariance at the next time step are denoted as
i x̂−(k + 1) ∶= 𝔼

[
x(k + 1)|Zi,(0∶k)

]
and iiΣ−(k + 1) ∶=

𝔼
[

i e−(k + 1) i e−(k + 1)T|Zi,(0∶k)
]
, respectively, where

i e−(k + 1) ∶= x(k + 1) − i x̂−(k + 1). Furthermore, the con-
catenated estimation error from every agent’s perspective and its
covariance are defined as e(k) = [1e(k)T⋯ N e(k)T]T ∈ ℝNnN

and Σ(k) ∶= 𝔼[e(k)e(k)T|Zi,(0∶k), ∀i ∈  ] ∈ ℝNnN×NnN ,
respectively. The predicted estimation errors from every agent’s
perspective e−(k) and its covariance Σ−(k) are defined in the
same manner.

Acquiring the measurement Zi (k) at each time step, the
state estimate of the MAS from the ith agent’s perspective is
recursively updated by the following linear estimator with the
estimator gain, Li ∈ ℝ

nN×n|Ωi |,
i x̂(k) = i x̂−(k) + Li

(
HiZi (k) − Hi

i x̂−(k)
)
, (5)

where Hi = [h1 h2 ⋯ h|Ωi |]T ⊗ In ∈ ℝ
n|Ωi |×nN filters out the

MAS state entries of non-neighbouring agents of the ith agent
where hm=1,2,…,|Ωi | ∈ ℝN are the non-zero column vectors of

the matrix diag(ai1, ai2 … ., aiN ). It is important to note that the
innovation term in (5), denoted as

(
HiZi (k) − Hi

i x̂−(k)
)
, solely

captures the measurements of neighbouring agents respecting
the network topology [63], and each agent uses this residual
information to update its estimates of the entire MAS state.

With the help of the estimated states, each agent can
implement the estimation-based feedback control law, realizing
virtual interactions not only with neighbouring but also with
non-neighbouring agents. Accordingly, we modify (4) to the
distributed estimation-based feedback control law as follows:

ui (k) = MiF
i x̂(k), ∀i ∈  . (6)

In (6), the subspace of the control gain F is no longer con-
strained by the actual network topology since the distributed
estimator embedded in each agent provides access to the
states of non-neighbouring agents. With the inclusion of the
estimation-based control law, we proceed to recast the original
distributed control Problem 1 into a unified distributed control-
estimation problem. This allows us to simultaneously optimize
both the control and estimation laws as follows.

Problem 2. Virtual interaction-based optimal distributed linear
control-estimation laws.

min
F∈𝔽̃,Li ,∀i∈

J (F ,L1, … ,LN )

subject to (2), (5), and (6), ∀i ∈ 

where J (F ,L1, … ,LN ) ∶= lim
T→∞

1

T

∑T

k=0 𝔼[xT(k)Qx(k) +
uT(k) Ru(k)].

Remark 1. In contrast to 𝔽, the subspace 𝔽̃ is a constraint-
free space since individual agents can access the estimate of
the entire system state and interact beyond their neighbours
despite the constraint 𝔽. Thus, no structural constraints are
placed on the matrix F in (6), offering full flexibility in design-
ing the virtual network topology. This means that the virtual
network topology is not dictated by the physical structure of
the network but is instead a design choice. Without loss of
generality, this paper adopts the entire matrix space, that is,
𝔽̃ = ℝNp×Nn, invoking a fully connected virtual network topol-
ogy that removes structural constraints in virtual interactions.
Exploring the design of virtual network topology is an inter-
esting topic but beyond the scope of this paper and will be
investigated in future work.

Unlike centralized systems, where the separation principle
can be applied to derive the optimal control and estimator gains
separately, the separation principle is not viable in distributed
MASs due to the mutual interdependence between the con-
troller and estimator [63]. Consequently, this renders Problem
2 inherently non-convex that often requires strict assumptions
for a globally optimal solution [21–25, 46–48]. To address this
issue, we propose a framework that iteratively optimizes control
and estimator gains for each agent without imposing stringent
constraints on the problem formulation.
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2572 LEE ET AL.

Specifically, as illustrated in Figure 1, our method involves
two sequential design steps at each iteration (denoted as l th).
First, in the distributed estimator design, the estimator gains,

denoted as L
(l )
i , ∀i ∈  , are computed (Section 3.1). These

gains are determined based on the distributed control gains
calculated from the previous iteration. Subsequently, in the dis-

tributed control law design, the optimization of the control gain
F (l ) takes place (Section 3.2). This optimization considers the
state estimation errors induced by the distributed estimators
from the preceding distributed estimator design. Then the control
and estimator gains obtained at the current iteration undergo
a convergence check and are then applied to the next iteration
(Section 3.3). This iterative optimization process continues until
predefined stopping criteria are met, returning the final control
and estimator gains represented by F ∗ and L∗i , ∀i ∈  . It is
worth noting that the iterative optimization occurs during the
offline design phase, utilizing information from the entire MAS
in a centralized manner. This design phase contrasts with the
actual operation of the MAS, which is executed in a distributed
fashion based on the following assumptions.

Assumption 1. Upon deployment, each ith agent in MAS is
equipped with the system dynamics, distributed control, and
estimator gains, that is, A,B,F ∗, and L∗i . This prior informa-
tion enables the individual agents to manage state estimation
and control during distributed MAS operations.

3 ALGORITHM DEVELOPMENT

This section outlines the procedure of the proposed control-
estimation synthesis for distributed MAS.

3.1 Distributed estimator design

The aim of the distributed estimator design is to optimize the
distributed estimator gains for each agent, denoted as L

(l )
i , ∀i ∈

 that minimize the estimation error covariances for each agent,
iiΣ, ∀i ∈  . The foundation for the distributed estimator design
stems from [61], but this subsection extends it to compute the
steady-state gains suitable for addressing infinite-time horizon
scenarios. During this offline design process, we exploit infor-
mation such as agent dynamics (A, B), neighbouring agents
(Ωi ), and the control law designed in the previous iteration,
denoted as F (l−1) (abbreviated as F in this subsection for
brevity).

By applying (6) with Definition 1, one can rewrite the
dynamics of MAS (2) as follows:

x(k + 1) = (Ã + B̃F )x(k) −
N∑
i

B̃M̄iF
i e(k) + w̃(k)

= (Ã + B̃F )x(k) −Πe(k) + w̃(k),

(7)

where Π = ̃̃BM̃F̃ , ̃̃B = 1T
N
⊗ B̃, M̃ =blkdg(M̄1, … , M̄N ), M̄i =

M T
i Mi , ∀i ∈  , and F̃ = IN ⊗ F . The predicted state estimate

of the MAS, as viewed from the perspective of the ith agent, can
be expressed as follows:

i x̂−(k + 1) = (Ã + B̃F ) i x̂(k). (8)

Then i e−(k + 1) can be computed by subtracting (8) from (7).
Furthermore, i e−(k + 1), ∀i ∈  are concatenated to represent
the predicted estimation error and its covariance as follows:

e−(k + 1) = Λke(k) + 1N ⊗ w̃(k),

Σ−(k + 1) = ΛkΣ(k)ΛT
k
+ Σw̃ ,

(9)

where Λk = IN ⊗ (Ã + B̃F ) − 1N ⊗ ̃̃BM̃F̃ , and Σw̃ =
(1N 1T

N
)⊗ blkdg(Θ1, … , ΘN ). The diagonal block-matrices

in Σ−(k + 1) represent the predicted estimation error
covariance from the perspective of each agent, denoted as
iiΣ−(k + 1), ∀i ∈  , while the off-diagonal block-matrices
indicate cross-covariances between the predicted state
estimates of two different agents, that is, i jΣ−(k + 1) =
𝔼[i e−(k + 1) j e−(k + 1)T], ∀i ≠ j ∈  .

Following the recursive update form (5), the predicted state
estimate is updated with the estimator gain Li (k + 1). This esti-
mator gain is designed to minimize the trace of the updated
estimation error covariance, i.e., Tr

(
iiΣ(k + 1)

)
, which yields,

Li (k + 1) = iiΣ−(k + 1)H T
i (Si (k + 1))−1, (10)

where,

Si (k + 1) = Hi (
iiΣ−(k + 1) + iΞ)H T

i ,

iΞ = blkdg(Ξi1, Ξi2, …ΞiN ).

Subsequently, the estimation error e(k + 1) and its covariance
Σ(k + 1) are updated as follows:

e(k + 1) = (I − L̃(k + 1))e−(k + 1) + L̃(k + 1)Ṽ (k + 1),

Σ(k + 1) = (I − L̃(k + 1))Σ−(k + 1)(I − L̃(k + 1))T

+ L̃(k + 1)ΣΞL̃(k + 1)T, (11)

where Ṽ (k + 1) =
[
vT
1 (k + 1)⋯ vT

N
(k + 1)

]T
, L̃(k +

1) = blkdg(L1(k + 1)H1, … ,LN (k + 1)HN ), and ΣΞ =
blkdg(1Ξ,… ,NΞ). Starting from the initial error covariance
Σ(0), we update the error covariance through equations (9),
(10), and (11) at each time step k = 0, 1, …. This continues until
the estimation error covariance converges to steady-state, as
determined by the following criterion,

DKL

(
p(k)||p(k − 1)

)
< 𝜖̃est , (12)

where DKL is the Kullback–Leibler (KL) divergence between
estimation error statistics over the consecutive time steps,
p(k) ∼

(
0nNN , Σ(k)

)
, and p(k − 1) ∼ (0nNN , Σ(k − 1)).

KL divergence is used for its ability to quantify differences
between probability distributions and its computational effi-
ciency [67]. Additionally, 𝜖̃est denotes the pre-set stopping
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LEE ET AL. 2573

tolerance. Once (12) is satisfied at k̃ time step, the steady-state
estimator gains and the corresponding estimation error covari-
ances are respectively determined as L

(l )
i
∶= Li (k̃), ∀i ∈  , and

Σ
(l )
e ∶= Σ(k̃), and the update terminates. This ends the l th

design iteration of the distributed estimator gains given the dis-
tributed control gain F = F (l−1). The computed L

(l )
i , ∀i ∈ 

and Σ
(l )
e will be utilized in the subsequent stage for the design

of the distributed control gain. Please refer to our prior studies
[61–63] for the detailed derivation and stability analysis of the
proposed distributed estimator.

Remark 2. The derived distributed estimator processes neigh-
bouring measurements only, yet each agent can estimate the
states of the entire MAS, including non-neighbouring agents.

3.2 Distributed control law design

In this subsection, the design process for the distributed control
gain is developed based on the embedded distributed estimator
within individual agents. The estimator gains and the associated
estimation error covariance computed in the previous subsec-

tion, that is, L
(l )
i and Σ

(l )
e , are respectively abbreviated as Li and

Σe for brevity. Similarly, the control gain, which serves as the
design parameter in this subsection, is denoted as F (l ) and will
be abbreviated as F . The optimization of F in the l th iteration
is then formulated as follows.

Problem 3. Infinite-horizon optimal distributed linear control
law design with the fixed distributed estimation law, Li , ∀i ∈  ,

min
F∈𝔽̃

lim
T→∞

1
T

T∑
k=0

𝔼[xT(k)Qx(k) + uT(k)Ru(k)]

subject to (2), (5), and (6)

In light of dynamic programming, let us first define the
optimal cost-to-go function as Vk(Z(0∶k) ) where Z(0∶k) =
{zi,(0∶k), ∀i ∈ } is the collection of all measurements each
acquired by individual agents up to time step k. Then, from the
Bellman’s optimality principle [68], the optimal cost-to-go can
be represented as follows:

Vk(Z(0∶k) ) = min
F∈𝔽̃

𝔼
[
xT(k)Qx(k) + uT(k)Ru(k)

+Vk+1(Z(0∶k+1) )|Z(0∶k)
]
. (13)

To address the expectation presented in (13), we intro-
duce the notation x̄(k) = 𝔼[x(k)|Z(0∶k)] to represent the
state expectation (or equivalently state estimate) conditioned
on the entire measurement set of the MAS up to time
step k. Similarly, the covariance of this expected esti-
mate is denoted as Σx̄ (k) = 𝔼[(x(k) − 𝔼[x(k)|Z(0∶k)])(x(k) −
𝔼[x(k)|Z(0∶k)])

T]. Notably, this state expectation is estimated
centrally and is only utilized for the offline design phase, not

accessible to individual agents during the online operational
phase. Given the initial covariance Σx̄ (0) and utilizing (7), the
covariance of the expected states can be recursively updated as
follows:

Σx̄ (k + 1) = (Ã + B̃F )Σx̄ (k)(Ã + B̃F )T +ΠΣ(k)ΠT + Σw̃ .

When the estimation error covariance converges to a steady-
state, that is, Σ(k) ≈ Σe , the corresponding steady-state covari-
ance of the expected state, denoted as Σx̄ , is given by,

Σx̄ = (Ã + B̃F )Σx̄ (Ã + B̃F )T +ΠΣeΠ
T + Σw̃ . (14)

Using the expected state and its covariance information, the first
quadratic term in (13) can be rewritten as follows:

𝔼[xT(k)Qx(k)|Z(0∶k)] = x̄T(k)Qx̄(k) + Tr (QΣx̄ (k)). (15)

Recalling (6), the estimation-based control law can be rewritten
in terms of error states as follows:

u(k) = Fx(k) −
N∑
i

M̄iF
i e(k). (16)

Then the second quadratic term in (13) with (16) can be
expressed by

𝔼[uT(k)Ru(k)|Z(0∶k)] =
N∑
i, j

Tr (F TM̄ T
i RM̄ j F

i jΣe (k))

+ x̄T(k)F TRF x̄(k) + Tr (F TRFΣx̄ (k)),

(17)

where i jΣe (k) ∈ ℝNn×Nn represent the block matrices that make
up Σe (k).

Now, let us parameterize the optimal cost-to-go function
using the following quadratic form

Vk

(
Z(0∶k)

)
= 𝔼

[
x(k)TP (k)x(k)|Z(0∶k)

]
+ q(k)

= x̄T(k)P (k)x̄(k) + Tr(P (k)Σx̄ (k)) + q(k),
(18)

where P (k) is called a cost-to-go matrix and q(k) encompasses
the cost terms related to the errors from distributed estima-
tors. Applying (7), the expected Vk+1(Z(0∶k+1) ) in (13) can be
expressed by

𝔼[Vk+1(Z(0∶k+1) )|Z(0∶k)] = Tr (P (k + 1)Σw̃ ) + q(k + 1)

+ x̄T(k)(Ã + B̃F )TP (k + 1)(Ã + B̃F )x̄(k)

+ Tr ((Ã + B̃F )TP (k + 1)(Ã + B̃F )Σx̄ (k))

+ Tr (ΠTP (k + 1)ΠΣe (k)).

(19)
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2574 LEE ET AL.

Then, plugging (15), (17), and (19) into (13) gives

Vk(Z(0∶k) )

= min
F∈𝔽̃

x̄T(k)
(
Q + F TRF + (Ã + B̃F )TP (k + 1)(Ã

+ B̃F )
)
x̄(k) + Tr

(
(Q + F TRF + (Ã + B̃F )TP (k + 1)

× (Ã + B̃F ))Σx̄ (k)
)
+

N∑
i, j

Tr (F TM̄ T
i RM̄ j F

i jΣe (k))

+ Tr (ΠTP (k + 1)ΠΣe (k)) + Tr (P (k + 1)Σw̃ ) + q(k + 1).
(20)

By equating the quadratic terms with respect to x̄(k) from
(18) and (20), the optimal cost-to-go matrix P (k) satisfies the
following recursion

P (k) = Q + F TRF + (Ã + B̃F )TP (k + 1)(Ã + B̃F ). (21)

Without loss of generality, the system is assumed to enter the
steady-state after sufficiently large k steps. Then, the first term
in (20), that is, quadratic cost function with respect to x̄, is
set to be zero. And the estimation error covariances can be
replaced with the steady-state matrices, that is, Σx̄ (k) ≈ Σx̄ , and
Σe (k) ≈ Σe . Afterward, to find the optimal F , we take the deriva-
tive of the remainders in (20) with respect to F and zero them
according to the first order optimality condition as follows:

𝜕Vk

𝜕F
=

N∑
i, j

M̄ T
i (R + B̃TP (k + 1)B̃)M̄ j F i jΣe

+ (R F + B̃TP (k + 1)Ã + B̃TP (k + 1)B̃ F )Σx̄ = 0.

(22)

In calculating the steady-state solution, the optimal cost-to-go
matrix at the l th iteration should be given as a constant matrix
P = P (k) = P (k + 1). Further, the optimal F should satisfy
(22) with this P . To find such a pair of optimal P and F , we
alternately solve (22) for F and (21) for P in an iterative man-
ner. That is, F is computed by (22) given P as constant, followed
by that P is updated by (21) while F is set to be constant. To
this end, let us denote F (l ,m) and P (l ,m) as the target optimiz-
ing variables at the mth iteration of the internal recursion for
F (l ) and P (l ) at the l th iteration of the distributed control law
design. Initializing with the optimal cost-to-go matrix in the
previous iteration, P (l ,0) = P (l−1), a generalized Sylvester equa-
tion derived from (22) is solved for computing F (l ,m) based on
P (l ,m) as follows:

N∑
i, j

M̄ T
i (R + B̃TP (l ,m)B̃)M̄ j F (l ,m) i jΣe + (R F (l ,m)

+ B̃TP (l ,m)Ã + B̃TP (l ,m)B̃ F (l ,m) )Σx̄ = 0.

(23)

Then, P (l ,m) is updated by

P (l ,m+1) =Q + F (l ,m)TRF (l ,m) + ÃTP (l ,m)Ã

+ ÃTP (l ,m)B̃F (l ,m) + F (l ,m)TB̃TP (l ,m)Ã

+ F (l ,m)TB̃TP (l ,m)B̃F (l ,m).

(24)

Equations (23) and (24) are repeated until the cost-to-go matrix
P (l ,m) satisfies the stopping condition as follows:

‖P (l ,m) − P (l ,m−1)‖
F
< 𝜖̃P , (25)

where the stopping threshold 𝜖̃P is set sufficiently small to
ensure that the computed P (l ,m) adheres to the conditions in
(21). Once the iteration terminates at 𝜂 step, we set F (l ) =
F (l ,𝜂), P (l ) = P (l ,𝜂) as the designed steady-state control gain and
the respective cost-to-go matrix at the l th iteration, respectively.

Remark 3. In the ideal case of a MAS with negligible estimation
errors, that is, i jΣe ≈ 0, ∀i, j ∈  , the first term in (22) becomes
negligible, resulting in

𝜕Vk

𝜕F
= (R F + B̃TP (k + 1)Ã + B̃TP (k + 1)B̃ F )Σx̄ = 0.

Then, the optimal F can be analytically derived as follows:

F = −(B̃TP (k + 1)B̃ + R)−1B̃TP (k + 1)Ã.

This result coincides with the centralized LQR solution. And it
is well matched to the fact that, without estimation errors, indi-
vidual agents have access to the full MAS state information, and
the original distributed control problem becomes a centralized
LQR problem.

3.3 Convergence check

After optimizing the distributed control and estimation laws at

the current iteration, we assess the computed F (l ) and L
(l )
i , ∀i ∈

 to decide whether to advance to the next iteration or not.
Throughout the iteration, a group of optimized variables is
stored in the following set

S̃ ∶=
{

s̃(l ) ∣ s̃(l ) =
(

F (l ), P (l ),L
(l )
1 , … ,L

(l )
N
, Σ

(l )
e

)
, ∀l ∈ ℕ

}
.

The iteration of the optimizations concludes when either: (i)
the maximum specified number of iterations, Ñmax, is reached,
or (ii) the consecutive iterations satisfy the following stopping
condition,

|Δ(l ) − Δ(l−1)| ≤ 𝜖̃stop, (26)
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LEE ET AL. 2575

ALGORITHM 1 (Design phase) Virtual interaction-based distributed
linear control-estimation synthesis

Initialization
∙ Set the MAS dynamics information A, B, , Σw̃ , ΣΞ, and the cost

metrics Q, R.
∙ Initialize F (0), and P (0).
∙ Set stopping thresholds 𝜖̃est , 𝜖̃P , 𝜖̃stop sufficiently small, and the

maximum number of iteration, Ñmax.

l = 0

While l ≤ Ñmax
(a) Distributed estimator design

While (12) is not satisfied
(1) Compute Li (k), ∀i ∈  , and Σ(k) using F (l ), (9), (10), and (11).

k ← k + 1
end While

Output ⟹ L
(l )
i
, ∀i ∈  , and Σ

(l )
e

(b) Distributed control law design

(2) Set P (l ,0) = P (l−1)

(3) Compute Σx̄ , by solving (14).
While (25) is not satisfied
(3) Compute F (l ,m) by solving (23).
(4) Update P (l ,m+1) using (24).
m ← m + 1
end While

Output ⟹ F (l )

(c) Convergence check

(5) Store F (l ), P (l ), Σ
(l )
e , L

(l )
i
, ∀i ∈  in the set S̃ .

(6) If (26) is satisfied ⟶ Break

else l ← l + 1

end while

Return ⟹ F ∗, and L∗
i
, ∀i ∈  using (27)

where the threshold 𝜖̃stop is set sufficiently small, and Δ(l ) is the
average stage cost defined by,

Δ(l ) ∶= Tr (Π(l )TP (l )Π(l )Σ
(l )
e ) + Tr (P (l )Σw̃ )

+
N∑
i, j

Tr (F (l )TM̄ T
i RM̄ j F

(l ) i jΣ
(l )
e ),

and Π(l ) = ̃̃BM̃F̃ (l ). Once the iteration ends, the resulting
control and estimator gains are denoted by,

F ∗ = F (𝜅̃), L∗i = L
(𝜅̃)
i , ∀i ∈ 

where 𝜅̃ = arg min
∀l∈|S̃ |Δ(l ).

(27)

The overall recursive structure of the design procedure is
summarized in Algorithm 1. During the operational phase, indi-
vidual agents employ F ∗ and L∗i to execute the online operation
of the MAS, as detailed in Algorithm 2.

Remark 4. The proposed distributed control-estimation synthe-
sis occurs during the offline design phase before deployment of
the MAS to online operation. In the design phase (Algorithm 1),
the primary computational complexity, which affects the scala-
bility of the algorithm in relation to the number of states and
agents in the MAS, arises from solving the matrix equation in

ALGORITHM 2 (Operational phase) Virtual interaction based distributed
linear control for the ith agent

Initialization
∙ Set the MAS dynamics information A, B, Hi , the initial condition i x̂(0),

the optimized control and estimator gains (F ∗, L∗
i

).

k = 0

While k ≥ 0 do
(1) Execute the control input ui (k) by (6).
(2) The MAS state x(k) is evolved to x(k + 1) by (2).
(3) Measure the state of neighbouring agents,

Zi (k + 1) by (3).
(4) Update i x̂(k + 1) using (8), and (5).

k ← k + 1

end while

(23) and calculating the inverse matrix (Si (k + 1))−1 in (10),
with quantifiable computational complexity orders of ((Nn)2)
and ((Nn)3), respectively. For online operations (Algorithm 2),
the onboard computation of each agent involves only elemental
matrix and vector multiplications, as presented in (2), (3), (5), (6),
and (8). Thus, online computation remains viable for individual
agents’ limited computing resources.

Remark 5. The taxonomy of centralized and distributed
methodologies for MAS can be distinctly brought into play
across design and operational phases. In the design phase, dis-
tributed methods rely solely on information from neighbouring
agents, allowing each agent to compute solutions indepen-
dently in a distributed manner. While this method provides
robustness and scalability, it is difficult to assure performance
without access to complete system information. Conversely,
our centralized design is favoured for its ability to lever-
age full system information during the offline design phase,
thereby optimizing complex MAS missions [36–39, 47]. For
the operational phase, our method adopts distributed control
that depends only on local measurements from neighbouring
agents, unlike centralized control, which demands full MAS
measurements and becomes impractical for MAS with network
topological constraints.

3.4 Theoretic stability analysis

To analyse the system stability in the MAS context, we refer
to the notion of semistability. Compared with the conventional
stability concept, semistability implies closed-loop dynamics
reaching a continuum of equilibria depicting designed states of
convergence. In particular, it has the property that the resulting
response of the system is determined not only by the system
dynamics but also by initial MAS states, which is more relevant
to describing the behaviour of MAS [69]. The formal definition
of semistability is as follows.

Definition 2 [69]. The system x(k + 1) = Ax(k) is semistable
if for every 𝜆 ∈ spec (A), the condition |𝜆| < 1 or 𝜆 = 1
is semisimple.
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2576 LEE ET AL.

To this end, we resort to some of the semistability results as
follows.

Definition 3 [70]. The pair (Ã, B̃) is semicontrollable if(
n⋂

i=1

 (B̃T(ÃT − In )i−1)

)⊥

=
(
 (ÃT − In )

)⊥
where (ÃT − In )0 = In.

Definition 4 [70]. Let C̃ ∈ ℝNn×Nn. The pair (Ã, C̃ ) is
semiobservable if(

n⋂
i=1

 (C̃ (Ã − In )i−1)

)
=  (Ã − In ).

Here, semicontrollability and semiobservability describe the
system’s ability to deal with the equilibrium manifold instead of
equilibrium points.

Accordingly, the stability analysis of the proposed distributed
control law F ∗ is condensed into checking the first moment of
(7), expressed by

𝔼[x(k + 1)] = (Ã + B̃F ∗ )𝔼[x(k)], (28)

is semistable, that is, (Ã + B̃F ∗ ) is semistable.

Theorem 1 [70]. Consider the closed-loop system G as follows:

x(k + 1) = (Ã + B̃F ∗ )x(k).

Then G is semistable if and only if for the semicontrollable pair (Ã, B̃),
and semiobservable pair (Ã, C̃ ) there exists a P ≥ 0 such that

P = (Ã + B̃F ∗ )TP (Ã + B̃F ∗ ) + Q + F ∗TRF ∗ (29)

where R > 0, and Q = C̃ TC̃ ≥ 0.

We are now ready to present the semistability result for our
designed control gain.

Theorem 2. Given the stochastic MAS dynamics (7), whose first

moment equation is expressed by (28), the steady-state distributed control

law F ∗ is semistable if the matrix pair (Ã, B̃) is semicontrollable, and

(Ã,Q
1

2 ) is semiobservable.

Proof. Since the designed P (𝜅̃) and F ∗ satisfies (29), the proof is
a direct consequence of Theorem 1. □

4 NUMERICAL SIMULATION

The proposed distributed control-estimation synthesis is vali-
dated using a numerical simulation of a multi-vehicle formation
manoeuvre. The formation manoeuvre aims to arrange N

homogeneous vehicles into a rigid circular shape, ensuring equal

FIGURE 2 Multi-vehicle circular formation manoeuvre under undirected
string network topology.

spacing between neighbouring vehicles, as shown by the for-
mation geometry in Figure 2. To quantify this formation goal,
we define a set of relative positions between vehicles, denoted
as xref

i j , ∀i, j ∈  , representing the desired relative position
between the vehicle j and the vehicle i. Subsequently, the global
quadratic cost for the formation manoeuvre of the MAS is
formulated as,

 ∶= lim
T→∞

1
T

T∑
k=0

𝔼
[(

x̃(k)TQx̃(k) + u(k)TRu(k)
)]
, (30)

x̃(k) =
[
x̃T

1 (k) x̃T
2 (k) ⋯ x̃T

N
(k)

]T
,

x̃i (k) = xi (k) − ixref, ∀i ∈  ,

ixref =
[
xrefT

i1 xrefT
i2 ⋯ xrefT

iN

]T
,

where Q = ⊗ I4, R = IN ⊗ I2. And considering two-
dimensional position and velocity as the state of each vehicle,
the dynamics of the individual vehicle is governed by (1), where,

A =

⎡⎢⎢⎢⎢⎣
1 Ts 0 0

0 1 0 0

0 0 1 Ts

0 0 0 1

⎤⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎢⎣

T 2
s

2
0

Ts 0

0
T 2

s

2
0 Ts

⎤⎥⎥⎥⎥⎥⎥⎦
.

and the sampling time, denoted as Ts , is set to 0.1 s. Disturbances
and measurement noises, in square meters m2, are uniformly set
as Θi = 0.1 × I4 and Ξi j = 0.1 × I4, ∀i, j ∈  .

As shown in Figure 2, the network topology is given as
an undirected string graph (1 ↔ 2 ↔⋯↔ N ), representing
a linear sequence of N vertices connected in series. As to the

theoretical analysis, the matrix pairs (Ã, B̃) and (Ã,Q
1

2 ) are
semicontrollable and semiobservable by Definitions 3 and 4,
respectively. Then by Theorem 2, we can guarantee that the
first moment of MAS is semistable, which ensures the stable
formation manoeuvre of vehicles.

We begin our analysis with the proposed distributed con-
trol law in a system consisting of five vehicles (N = 5). The
distributed control gain matrix governs interactions among
vehicles and is segmented into smaller block matrices, each
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LEE ET AL. 2577

FIGURE 3 Visualization of the virtual interaction intensities among five vehicles forming a circular shape via the proposed distributed control, operating under
uniform measurement noise condition.

FIGURE 4 Visualization of the virtual interaction intensities when the measurement noises of vehicle 1 are tenfold higher than the others.

signifying the interaction between a specific pair of vehicles.
Computing the norm of these block matrices allows us to quan-
tify the interaction intensity between each pair of vehicles, as
illustrated in Figure 3. For instance, the top row illustrates
the virtual interaction intensities between vehicle 1 and others
from vehicle 1’s perspective. Notably, substantially large interac-
tion intensities correspond to non-zero entries in the Laplacian
matrix , indicating intensive interactions among neighbouring
vehicles. Even in cases of zero entries in , the intensity values
remain non-zero, signifying virtual interactions among non-
neighbouring vehicles enacted by the fully connected virtual
network topology established through the distributed estimator.

To further elucidate the fundamental mechanism behind the
proposed distributed control-estimation synthesis, additional
simulations are conducted with the different measurement noise
configurations. Specifically, the noise covariance for measure-
ments of vehicle 1 is scaled to be ten times greater than that of

the other vehicles, such that Ξi1 = I4, ∀i ∈  . Figure 4 displays
the resulting virtual interaction intensities. Notably, augmenting
the noise affecting vehicle 1 leads to a reduction in interaction
intensities between vehicle 1 and all other vehicles, that is, the
first row and the first column of the grid in Figure 4. This arises
from the fact that the optimization of the control gain consid-
ers estimation errors from all individual vehicles within the cost
function. Consequently, the control gain is designed to mitigate
the impact of estimation errors due to measurement noise. This
trend leads to the intuition that reduced interaction is favoured
when the measured information is less accurate.

For the purpose of comparative performance analysis, we
evaluate our method against three distinct approaches. The first
comparison method is a centralized output feedback designed
by linear quadratic Gaussian (LQG) control framework, detailed
in [59]. This utilizes all available measurements within the net-
work to update centralized estimates, and each vehicle shares
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2578 LEE ET AL.

FIGURE 5 Average stage costs of formation manoeuvre with varying
number of vehicles (Monte Carlo simulations with 1000 runs). LQG, linear
quadratic Gaussian; MAS, multi-agent system.

this information for centralized optimal control. Although it is
not a distributed control, this method can be a good bench-
mark to compare with the distributed control schemes. The
second comparison method is a suboptimal distributed control
method introduced in [37], where only neighbouring vehi-
cles’ measurements are directly utilized to compute distributed
control inputs. The third comparison method employs a dis-
tributed estimation-based control approach, described in [59].
This method introduces communication between neighbouring
vehicles to exchange MAS estimates. Through 𝛾 intermediate
communications per sampling time, vehicles receive distributed
estimates from their neighbours, perform consensus between
their estimates, and subsequently engage in distributed con-
trol based on their own estimates. As the size of the network
gets bigger, that is, with a bigger N , more intermediate com-
munications are required to reach a reasonable degree of
consensus. These three comparison methods, along with our
proposed method, are evaluated via Monte Carlo simulations
for N = 5, 10 and 15. Throughout the simulations, the net-
work topology is kept as an undirected string graph while the
formation goal is circular geometry. To secure the consensus
on the estimates for stable operation with the third compar-
ison method across varying vehicle numbers, we adjust 𝛾 to
5, 20 and 55 accordingly.

Figure 5 shows the average stage costs over 1000 Monte
Carlo runs, demonstrating our distributed control-estimation
law’s effectiveness, which nearly achieves centralized opti-
mal control performance (the first comparison method) and
surpasses the second and the third comparison methods. In par-
ticular, the average costs of the both second and third methods
significantly increase when the number of agents exceeds 10,
signifying poor efficiency in larger networks. Furthermore, the
additional intermediate communication overhead incurred by
the third method makes it more challenging to deploy in the real
world. Meanwhile, our method scales well, closely matching the

performance of the centralized optimal solution’s performance
without requiring additional communication, demonstrating its
effectiveness across various network sizes and its applicability to
MAS with larger networks.

Table 1 presents a comparison of the scalability between
the comparison methods and ours in relation to the number
of agents and states, remarking on evaluation criteria such as
the computational complexities during the design and opera-
tional phases, the load associated with acquiring measurements
from neighbours, and the load from additional intermediate
communications per sampling time. These criteria are assessed
using big  notation which is desired to be reduced in prac-
tical applications. In terms of computational complexity, the
second comparison method stands out, exhibiting the min-
imum load and computational complexity during both the
design and operational phases, albeit at poor performance. In
terms of measurement load, the centralized LQG ranks least
favourably, as it necessitates processing measurements from the
entire MAS. Our proposed method and the second comparison
method offer significant advantages in terms of communication
efficiency, as neither requires additional intermediate communi-
cation. This contrasts with the third comparison method, whose
intermediate communication load scales poorly. In summary,
our method closely approximates the centralized optimal solu-
tion, simultaneously eliminating communication overhead and
minimizing risks associated with communication vulnerabilities
by utilizing only neighbouring measurements.

5 HARDWARE EXPERIMENT

To further validate the practical soundness of the proposed
method, experiments involving the formation flight of five
quadrotors in an indoor test-bed are conducted, as portrayed
in Figure 7. For these experiments, five Crazyflie quadro-
tors are controlled remotely through the Crazyswarm platform
[71]. The source code and experiment video can be found in
the git repository. https://github.com/HMCL-UNIST/MAS-
Distributed-Ctrl-Est-Synthesis.git

Considering the velocity for controlling the quadrotors, we
model MAS dynamics using velocity in the horizontal plane
as control input. Each quadrotor’s state is defined by its hor-
izontal position, x = [pT

x pT
y ] ∈ ℝ2 (meters), leading to MAS

dynamics represented by A = I2 and B = I2 × Ts , with Ts =
0.05 s. The rest of the set-up is akin to the numerical sim-
ulations, that is, undirected string network topology and the
circular formation geometry according to the cost (30) with
Q = ⊗ I2, R = I5 ⊗ I2. Measurement data acquisition for
each quadrotor is performed using an Optitrak motion cap-
ture system operating at a 100 Hz frequency. Note that the
position measurement obtained by Optitrack exhibits mm-level
accuracy, which can be used as ground truth when evaluating
the performance. To emulate sensor noise for our experiment,
we infuse synthetic zero-mean Gaussian noise with 0.1 m2

variance (Ξi j = 0.1 × I2, ∀i, j ∈ ) into the Optitrack measure-
ments before feeding them into the distributed estimator. As
to the process noise and/or disturbance of the quadrotor, we
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TABLE 1 Comparative analysis of computational complexity, measurement, and additional communication loads

Algorithms

Centralized

LQG

Proposed

method

Suboptimal

distributed

control [37]

Communication-based

distributed control [59]

Computation complexity (design phase) (n3N 3 ) (n3N 3 ) (n3 ) 

⎛⎜⎜⎝n3

(
N∑
i, j

ai j

)3⎞⎟⎟⎠
Computation complexity per agent (operational phase) (n2N 2 ) (n2N 2 ) (n2|Ωi |2 ) (n2N 2 )

Load of measurements per sampling time (N 2 ) 

(
N∑
i, j

ai j

)


(
N∑
i, j

ai j

)


(
N∑
i, j

ai j

)
Load of additional communication per sampling time — — — 

(
𝛾

N∑
i, j

ai j

)

Abbreviation: LQG, linear quadratic Gaussian.

FIGURE 6 Traces of positions relative to the center of multi-agent system (MAS) from real-world formation flight experiments, with quadrotor 1’s position
measurement noise characterized by variances of (a) 0.2 m2 and (b) 0.5 m2. Blue: Centralized linear quadratic Gaussian (LQG); Green: Proposed method; Orange:
Suboptimal distributed control [37]; Red: Communication-based distributed control [59].

test its hovering manoeuvre in our indoor test-bed and found
that the positioning statistics exhibit 0.05 m2 variance. This is
used as the disturbance covariance for the distributed estimator
(Θi = 0.05 × I2, ∀i ∈ ).

To assess the effectiveness of our method amidst varying
measurement noise levels, experiments were conducted by alter-
ing the noise level of quadrotor 1 in two configurations: one
with a variance of 0.2 m2, that is, (Ξi1 = 0.2 × I2, ∀i ∈ ),
and 0.5 m2, that is, (�i1 = 0.5 × I2, ∀i ∈ ). Given the control-
estimation laws designed by Algorithm 1, control commands are
computed and transmitted to each quadrotor at a frequency of
20 Hz, using a laptop powered by an Intel Core i7-122 CPU.

Comparative analysis is conducted with the comparison
methods detailed in Section 4, conducting ten trials per method,
with each trial lasting 10 s of flight. This duration is enough
to observe the quality of formation behaviour toward the tar-
get geometry. For the third comparison method, the number
of intermediate communication steps between neighbouring
quadrotors is set as 𝛾 = 3. Figure 6a,b shows the quadrotors’

FIGURE 7 Indoor testing environment (6 m × 6 m horizontal space) for
rigid shape formation flight with five Crazyflie quadrotors and a motion
tracking system. To ensure formation, quadrotors are set to maintain an equal
distance between neighbouring while aligning in a circular pattern (radius of
0.5 m).
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FIGURE 8 Average stage costs from formation manoeuvres (ten trials each lasting 10 s), with quadrotor 1’s position measurement noise with a variance of (a)
0.2 m2 and (b) 0.5 m2. LQG, linear quadratic Gaussian.

position traces relative to the center of the MAS, highlighting
how the formation aligns with the objective shape. The sec-
ond comparison method’s traces are notably more dispersed
than others, and the third comparison method’s dispersion
increases with higher noise levels. On the other hand, our pro-
posed method performs a decent formation almost matched
to the centralized optimal solution, underlining its robustness
against various noise levels. Figure 8a,b, respectively depicts
the average stage costs of the methods over time, under two
different noise configurations for quadrotor 1. The second
comparison method performs poorly, while the third compar-
ison method initially matches our performance under low noise
but degrades with increased noise. Remarkably, our method
matches the performance of the centralized optimal solution
in both scenarios without relying on additional intermediate
communications, demonstrating its efficiency and robustness
against noise variations.

6 CONCLUSION

In this study, we investigated the optimal distributed control-
estimation synthesis problem for stochastic linear MAS,
addressing complexities imposed by network topological con-
straints. An iterative optimization process is proposed to jointly
design distributed linear control and estimation laws while con-
sidering their mutual influence. Furthermore, we verify the
stability of our proposed solutions through rigorous theoreti-
cal proof. The designed distributed control and estimation laws
were validated through numerical simulations and real-hardware
quadrotor formation flight experiments. The results consis-
tently showed that the proposed distributed estimation-based
control outperformed existing methods in terms of perfor-

mance without requiring additional communication load. This
approach ensures the prevention of communication congestion
as the network size scales. This work paves the way for a new
research paradigm in optimal distributed control, with many
future directions including:

(1) Extending the proposed distributed control-estimation
framework to address real-world challenges such as time-
varying network topology, physical constraints, and process
delays;

(2) Developing robust and plug-and-play control-estimation
synthesis for cases when the given dynamics model or the
network topology is inaccurate and/or partially known;

(3) Advancing scalability for larger networked systems by
reducing the computational overhead of each agent; and

(4) Applying the proposed distributed control-estimation
framework to facilitate the cooperative MAS mission with
complex dynamics, for example, coordinated load transfer
using multiple aerial vehicles.
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