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Abstract—This article proposes a distributed estimation algo-
rithm that uses local information about the neighbors through
sensing or communication to design an estimation-based coop-
erative control of the stochastic multiagent system (MAS). The
proposed distributed estimation algorithm solely relies on local
sensing information rather than exchanging estimated state
information from other agents, as is commonly required in
conventional distributed estimation methods, reducing communi-
cation overhead. Furthermore, the proposed method allows inter-
actions between all agents, including non-neighboring agents, by
establishing a virtual fully connected network with the MAS state
information independently estimated by each agent. The stability
of the proposed distributed estimation algorithm is theoreti-
cally verified. Numerical simulations demonstrate the enhanced
performance of the estimation-based linear and nonlinear control.
In particular, using the virtual fully connected network concept
in the MAS with the sensing/communication range, the flock
configuration can be tightly controlled within the desired bound-
ary, which cannot be achieved through the conventional flocking
methods.

Index Terms—Consensus, distributed state estimation, flocking
control, multiagent systems (MASs), rendezvous control.

NOMENCLATURE

i Agent index.
N Number of agents.
Ni Neighbor set of agent i.
L Laplacian matrix.
xi State vector of agent i.
zi Measurement vector.
ui Control input vector.
ωi Process noise vector.
νi Measurement noise vector.
A State transition matrix.
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B Control input matrix.
Hi Measurement matrix.
Q Covariance of process noise.
R Covariance of measurement noise.
X MAS state vector, [xT

1 · · · xT
N]T .

Z MAS measurement vector, [zT
1 · · · zT

N]T

U MAS control input vector, [uT
1 · · · uT

N]T .
ω MAS process noise, [ωT

1 · · ·ωT
N]T .

F1 MAS state transition matrix.
F2 MAS error input matrix.
Q Covariance of MAS process noise, diag{Q, . . . , Q}.
X̂−

i Prior estimation of X from the perspective of agent
i, [x̂−T

i,1 · · · x̂−T
i,N ]T .

e−
i Prior estimation error.

�−
i Covariance of e−

i .
X̂i Posterior estimation of X, [x̂T

i,1 · · · x̂T
i,N]T .

ei Posterior estimation error.
�i Covariance of ei.
Ûi Estimation of U.
Si Residual covariance.
Gi Kalman gain.
e Augmented estimation error, [eT

1 · · · eT
N]T .

X̂ Augmented estimation of X, [X̂T
1 · · · X̂T

N]T .
� Covariance of e.
�−

ij Prior cross covariance of e−
i and e−

j .
�ij Posterior cross covariance of ei and ej.

I. INTRODUCTION

ALONG with the increasing interest in autonomy, research
on distributed estimation and control for a multiagent

system (MAS) has been carried out in various fields [1], [2].
This is primarily thanks to its clear advantages over the central-
ized approach in efficiency, robustness, flexibility, scalability,
and reliability [3]. However, due to limited communication
capability and the lack of a central administrator, the coop-
erative operation of a distributed MAS can be difficult. The
following summarizes relevant research on the distributed
estimation and control of the MAS.

A. Distributed Estimation of MAS

Distributed estimation aims to estimate certain state
information by sharing the estimated information among
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agents in the MAS in a distributed manner. Most of the dis-
tributed estimation is performed in the distributed Kalman
filter framework [4]. In particular, observations and consensus
averaging algorithms were integrated to estimate a large-scale
distributed system in [5]. A robust unknown input observer
for a linear MAS was applied to fault estimation in [6],
and unknown inputs and states were estimated through dis-
tributed cooperative filters in [7]. In [8], a distributed fuzzy
state observer was proposed to estimate the nonlinear function
of dynamics. In addition, Kalman consensus filtering [9] and
diffusion strategies for distributed Kalman filtering [10] were
introduced to estimate stochastic systems. However, there are
still unresolved issues resulting from a distributed framework
approach, e.g., communication overhead [11].

B. Distributed Control of MAS

Distributed control of the MAS is focused on achieving
greater performance and efficiency during operations while
addressing the topological constraints of MAS network. As
the limited communication among agents restricts the capabil-
ities of the MAS, some studies have focused on a distributed
control protocol that can maximize or preserve the network
connectivity [12], [13]. Besides, various studies have con-
sidered the consensus control of the MAS under the given
network constraints. The fundamental idea of consensus is
to reach a common agreement among agents by synthesiz-
ing the local control protocols with the shared information
of the neighboring agents. Recent related studies investigated
a consensus protocol in the nonlinear MAS [14], embedding
distributed observers to follower agents [15], and convergence
to consensus quickly in a different way from the conventional
Laplacian approach [16]. Several cooperation problems use
consensus in the control protocol, including rendezvous [17],
formation [18], and flocking [19]. The stability of the con-
sensus, as well as sufficient conditions for the existence of
the desired consensus control protocol with noise and delay,
have been verified using the Lyapunov theory [19], [20], [21].
In [22], consensus conditions are established for a stochastic
approximation-type algorithm that reduces the consensus gain
in noisy measurement environments. Furthermore, distributed
sliding-mode control [23] and distributed PI control [24] have
been studied for accomplishing consensus in stochastic MAS.
Nevertheless, these methods can only be applied under cer-
tain conditions: [22] assumes that the consensus gain goes to
zero as time goes to infinity; and [23] and [24] are work-
ing under the bounded disturbance condition. Thus, further
research needs to be conducted on consensus control for
stochastic systems.

C. Distributed Estimation of Stochastic MAS
for Distributed Control

For stochastic systems, a control strategy using the esti-
mated information of the MAS state can improve the
performance of the consensus protocol [25]. However, during
the process of distributed estimation like Kalman consensus
filtering, problems appear owing to a large amount of data

to be transmitted among agents and the limited communi-
cation capability resulting in packet loss, delay, and large
energy consumption [26]. To address these issues, a gossip-
based approach [27] is proposed, in which a local information
exchange occurs at random and an event-triggered consensus
approach is proposed [28]. They can, however, only reduce
the frequency of communication and not the size of the
packets. By contrast, a proposed method in [29] for dis-
tributed estimation of the MAS state relies solely on neighbor
information via local sensing and does not require communica-
tion. According to [29], by capturing the mutual influence from
interagent cooperation, each agent can estimate the entire MAS
state including non-neighboring agents (i.e., agents outside of
the sensing range) by observing only the state of the direct
neighbors. Although this approach can estimate MAS state
successfully, estimated information was not used in the con-
trol protocol and thus could not contribute to the improvement
of MAS coordination. Meanwhile, in [8], even though agents
estimate the state to be used for control without exchanging
the estimated information of others, each agent estimates its
own state only (not the other agents’ or entire MAS state) in
a deterministic system.

In the output consensus protocol in a stochastic system,
fluctuations may occur in the state of agents due to sen-
sor noise. In addition, since the distributed system can only
use limited information from neighboring agents through a
network, distributed optimal control is intractable under topo-
logical network constraints [30]. Although the aforementioned
methods [22], [23], [24] have been proposed to deal with these
issues, they can only be used in certain conditions. On the
other hand, the consensus protocol using the estimated state
information can effectively deal with the above issues, but
these consensus-based estimation algorithms, such as the dis-
tributed Kalman filter method [4], require a frequent exchange
of the estimated state information among neighbors, which can
cause large communication overhead.

D. Main Contributions

Building upon the study described in [29], this study pro-
poses a distributed control protocol by promoting a distributed
estimation algorithm to achieve effective cooperation in the
stochastic MAS while addressing the aforementioned limita-
tions. Individual agents in the proposed distributed estimation
algorithm require only local observations on the state of
neighboring agents obtained through either sensing or com-
munication in contrast to most existing distributed strategies.
This article deals with two different MAS control problems:
1) linear rendezvous control and 2) nonlinear flocking con-
trol, emphasizing that the proposed algorithm can be applied
to various MAS control problems. The main contributions of
this study are as follows.

1) The distributed estimation algorithm is developed in
which each agent can estimate the state of the entire
MAS using only local observations of the state of neigh-
boring agents. The proposed approach has the advantage
in that it is free from the exchange of the estimated
information (including mean and covariance of the entire
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MAS state which could be a large amount of data)
among agents which was required in the existing dis-
tributed estimation method; only local observations (or
communication if allowed) of the state of neighboring
agents are sufficient, which can significantly reduce the
communication overhead.

2) The proposed estimation-based control protocol
improves the coordination performance of the stochastic
MAS for both linear and nonlinear MAS coordination
problems.

3) A virtual fully connected network can be established
through the distributed estimation of the entire MAS
states by using the same cooperative controller for
all agents; this enables interactions even with non-
neighboring agents, providing enhanced MAS capabili-
ties particularly for nonlinear flocking control.

4) Stability analysis of the estimation-based control proto-
col is verified using the Lyapunov theory.

The remainder of this article is organized as follows. In
Section II, we present the graph theory, a description of the
dynamics and sensor models of the MAS, and the linear ren-
dezvous and nonlinear flocking problems. Section III presents
the estimation-based control protocol for rendezvous, flocking
control, and a detailed derivation of the proposed distributed
estimation. Section IV analyzes the stability of the distributed
estimation algorithm, followed by a numerical demonstration
of the proposed distributed estimation and control protocol
in Section V. Finally, some concluding remarks and areas of
future study are provided in Section VI.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Graph Theory

A proximity graph (network) among N agents is used to
describe the interconnections of the agents. The graph G is
formally defined as a pair G = (V, E) with a set of nodes
V = {1, . . . , N} and a set of edges E ⊆ V × V . The edge
in graph G, denoted by a pair (i, j) ∈ E , indicates that the
ith agent can measure the state of the jth agent. The set of
neighbors Ni of the ith agent on this proximity graph at time
step k is defined as follows:

Ni[k] = {
j ∈ V\{i} :

∥∥pi[k] − pj[k]
∥∥ < r

}

where pi[k] ∈ R
n is the position vector of the ith agent. If we

suppose that all agents have the same sensing range r > 0,
then (i, j) ∈ E ⇔ (j, i) ∈ E , i.e., an undirected graph. The set
of edges is defined as E[k] = {(i, j) : j ∈ Ni[k]}. The adjacency
matrix A ∈ R

N×N is defined in an element-wise manner as

[A]ij =
{

1, if j ∈ Ni

0, otherwise

where ∀i, j ∈ V . The degree of nodes is a vector
d = A × 1N ∈ R

N , where 1N ∈ R
N is a column vector with all

elements having a value of 1. The degree matrix is defined as
D = diag{d} ∈ R

N×N , and the Laplacian matrix of the graph
is defined as L = D − A ∈ R

N×N , which is a symmetric
matrix.

B. Dynamics and Sensor Model

This study focuses on the behavior of mobile MAS applica-
tions, where each agent’s state is a constituent of its position
and velocity. The dynamics of the ith agent can be written as
follows:

xi[k + 1] = Axi[k] + Bui[k] + ωi[k] (1)

where the state vector is denoted by xi[k] = [pT
i [k] vT

i [k]]T ∈
R

2n, vi[k] ∈ R
n is the velocity vector, ui[k] ∈ R

n is the con-
trol input vector, and ωi[k] ∈ R

2n is the process noise vector.
Hereafter, the time index is frequently omitted unless it is nec-
essary. The state transition matrix A and control input matrix
B have the following form:

A =
[

In �tIn

0n In

]
, B =

⎡

⎣
�t2

2
In

�tIn

⎤

⎦

where In and 0n are the n-dimensional identity matrix and zero
matrix, respectively, and �t is the sampling time.

The ith agent is assumed to be able to measure to obtain
the states of its neighboring agents. The measurement of the
ith agent including its own state is given by the following:

zi,xj[k] = xj[k] + νij[k], j ∈ Ni[k] (2)

where zi,xj ∈ R
2n is the jth agent’s state measured by the

ith agent, νij ∈ R
2n is its noise, and Ni = Ni ∪ {i}. The

measurement vector for the ith agent is denoted as follows:

zi[k] = Hi[k](X[k] + νi[k]) (3)

where X = [xT
1 · · · xT

N]T ∈ R
2nN is the state vector of the

MAS, Hi ∈ R
2n|Ni|×2nN is the measurement matrix for the

ith agent, |Ni| is the cardinality of the set, and νi ∈ R
2nN is

the measurement noise vector. The measurement matrix Hi is
given by the following:

Hi = [h]lm =
{

I2n, if m = Ni,l

02n, otherwise

where ∀l ∈ {1, . . . , |Ni|}, ∀m ∈ V, and Ni,l is the lth ele-
ment of Ni. This sensor model measures the neighbors and
its own state. Notably this sensor model can also be regarded
as a single-hop communication model within the communi-
cation range. The process noise ωi and measurement noise
νi are assumed to be independent and identically distributed
(i.i.d.) white Gaussian random variables with ωi ∼ N2n(0, Q)

and νi ∼ N2nN(0, R). The following information on the agent
dynamics and sensor model is assumed to implement the
proposed distributed estimation.

Assumption 1: The MAS consists of homogeneous agents,
representing that all agents have the common information
about agent dynamics, process, and measurement noise covari-
ance as prior knowledge, i.e., A, B, Q, and R [29].

The following sections sequentially describe the rendezvous
and flocking control protocols that the MAS is designed to
follow cooperatively.
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C. Linear Rendezvous Control

The definition of the rendezvous in this study is that both
position and velocity of all agents reach to a common value, i.e.,
limk→∞ ||pi[k] − pj[k]|| = 0 and limk→∞ ||vi[k] − vj[k]|| = 0
∀i, j ∈ V . Second-order consensus control for rendezvous
follows [17], which is given as follows:

ui(X) = K
∑

j∈Ni

(
xj − xi

)

K = [
ρ1In ρ2In

]
(4)

where ρ1, ρ2 > 0 are the rendezvous control gains. A second-
order consensus with agent dynamics (1) and the control
protocol (4) can be achieved if the network contains a spanning
tree (connectivity condition).

It is difficult to use the agent’s exact state information for
control because the model has uncertainty and the measure-
ments are normally noisy. Thus, while retaining the structure
of (4), the control input uses measurements applying the sensor
model as follows:

ui(zi) = K
∑

j∈Ni

(
zi,xj − zi,xi

)
. (5)

D. Nonlinear Flocking Control

The definition of the flocking is based on the Reynolds
rules [31] which agents fly densely without collision and
velocity reach to a common value. For flocking control, this
study uses the augmented Cucker–Smale model to align the
velocity and achieve cohesion and separation [19], which are
given as follows:

ui(X) = ρ3

∑

j∈Ni

φ1
(
pij

)(
vj − vi

)

+ ρ4

∑

j∈Ni

φ2
(
pij, vij

)(
pj − pi

)
(6)

where ρ3 and ρ4 > 0 are the flocking control gains, the relative
position pij = pi − pj, and the relative velocity vij = vi − vj.
In (6), the first term achieves the velocity consensus, whereas
the second term keeps the relative distance among the agents.
The φ functions are

φ1
(
pij

) = 1/
(

1 + ∥∥pij
∥∥2

)β

φ2
(
pij, vij

) = ρ5

2
∥∥pij

∥∥2

〈
vij, pij

〉 + ρ6

2
∥∥pij

∥∥
(∥∥pij

∥∥ − R)

where β ≥ 0, ρ5, ρ6 > 0 is the function gains, and 〈·, ·〉 is the
inner product. In addition, R is the desired distance between
agents if N = 2, but if there are more than two agents, R is
the upper bound of the agent’s position from the center of all
agents in a converged flock configuration [32]. It should be
noted that this is only true if the network is fully connected,
which means that all agents interact with one other; otherwise,
the R boundedness of the converged flock configuration is
no longer guaranteed. However, in a general MAS operation,
it is difficult for agents with limited sensing/communication
range to maintain a fully connected network topology at all
times; this is why we introduce the concept of a virtual fully

connected network for tight flocking control by distributed
estimation in Section III-B. The augmented Cucker–Smale
model with agent dynamics (1) and a control protocol (6)
is stable when β < 1/2 and the connectivity condition is
satisfied.

Similar to the description in Section II-C, flocking control
using measurements can be presented as follows:

ui(zi) = ρ3

∑

j∈Ni

φ1
(
zi,pij

)(
zi,vj − zi,vi

)

+ ρ4

∑

j∈Ni

φ2
(
zi,pij , zi,vij

)(
zi,pj − zi,pi

)
(7)

where zi,pj and zi,vj are the position and velocity of the jth
agent measured by the ith agent, respectively, and zi,pij and
zi,vij are the relative position and velocity between the ith and
jth agents as measured by the ith agent.

III. DISTRIBUTED STATE ESTIMATION AND CONTROL

PROTOCOL FOR COORDINATION OF STOCHASTIC

MULTIAGENT SYSTEM

This section describes the development of a distributed esti-
mation algorithm that can track the entire agent belonging to
the MAS and design a control protocol based on it. Here,
the distributed estimation algorithm is developed for both lin-
ear and nonlinear MAS control and improves the coordination
performance of the MAS as exemplified by the rendezvous
and flocking problems, respectively.

A. Linear Systems

This section presents a distributed estimation algorithm
and estimation-based rendezvous control protocol in linear
systems while only states of neighboring agents through sens-
ing or communication are processed as local information. It is
assumed that computation time for the estimation process is
less than the data sampling time (i.e., sensing frequency).

1) Distributed State Estimation: First, we derive a dis-
tributed estimation algorithm in a linear MAS that applies a
collective behavior using the state of the MAS. All agents
follow the same feedback control strategy given as (5) to
achieve consensus through coordination. Concatenating the
agent dynamics, the MAS dynamics is expressed as follows:

X[k + 1] = (IN ⊗ A)X[k] + (IN ⊗ B)U(Z[k]) + ω[k] (8)

where Z[k] = [zT
1 [k] · · · zT

N[k]]T is the vector of measurements
of all agents at time step k, U(Z) = [uT

1 (z1) · · · uT
N(zN)]T ∈

R
nN is the control input of the MAS, ω = [ωT

1 · · · ωT
N]T ∈

R
2nN , and ⊗ denotes the Kronecker product. Because the con-

trol input of each agent is a linear function of X with noise,
(5) can be decomposed using (2) as follows:

ui(zi) = K
∑

j∈Ni

(
(xj + νij) − (xi + νii)

)

= −K(Li ⊗ I2n)X − K(Li ⊗ I2n)νi (9)

where Li ∈ R
1×N is the ith row of the Laplacian matrix. Then,

using the Laplacian matrix L, the control input U(Z) of the
MAS can be rewritten in a compact matrix form as

U(Z) = −(L ⊗ K)X − (IN ⊗ K)ν̄ (10)
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where ν̄ = [((L1 ⊗ I2n)ν1)
T · · · ((LN ⊗ I2n)νN)T ]T ∈ R

2nN .
Substituting (10) into (8), the MAS dynamics takes the state
feedback as follows:

X[k + 1] = (IN ⊗ A)X[k] − (L[k] ⊗ BK)X[k]

− (IN ⊗ BK)ν̄[k] + ω[k]

= F1[k]X[k] − (IN ⊗ BK)ν̄[k] + ω[k] (11)

where F1 = (IN ⊗ A) − (L ⊗ BK) ∈ R
2nN×2nN .

The Kalman filter method is used to recursively estimate the
total state of the MAS from the perspective of an individual
agent, using a Bayesian approach. Let z0:k

i = {zi[0], . . . , zi[k]}
denote the set of measurements collected by the ith agent up
to time step k. Based on z0:k

i , the updated state and covariance
of the MAS, estimated by the ith agent at time step k, are
defined as follows:

X̂i[k] := E

[
X[k]|z0:k

i

]

�i[k] := E
[
ei[k]eT

i [k]
]

where E[ · | · ] is the conditional expectation and ei = X −
X̂i ∈ R

2nN . Suppose the state of the MAS is estimated using
a centralized approach. In this case, the exact control action
for each agent can be calculated by synthesizing all of the
agents’ measurements, resulting in concurred control actions
from the entire MAS viewpoint. However, because each agent
only knows its own measurement in a distributed fashion in
this article, it is difficult for each agent to know precisely
the control actions exerted on the other agents. Accordingly,
at best, each agent estimates the entire MAS control input,
U(Z), based on its estimated information of the MAS state.
Using (10), the estimated control input of the MAS by the ith
agent is defined as follows:

Ûi[k] := E
[
U(Z[k])|z0:k

i

] = − (L[k] ⊗ K)X̂i[k]. (12)

Note that unlike in a centralized approach, Ûi, ∀i ∈ V ,
might be different concerning each agent’s specific viewpoint.
Through a comparison with (10), (12) can be represented as
follows:

Ûi[k] = U
(

X̂i[k]
)
. (13)

Then, from the MAS dynamics (8), the state of the MAS
predicted by the ith agent is defined as follows:

X̂−
i [k + 1] := E

[
X[k + 1]|z0:k

i

]

= (IN ⊗ A)X̂i[k] + (IN ⊗ B)U
(

X̂i[k]
)

= F1[k]X̂i[k] (14)

and the predicted error covariance is computed using (11)
and (14)

�−
i [k + 1] := E

[
e−

i [k + 1]e−T
i [k + 1]

]

= F1[k]�i[k]FT
1 [k] + (IN ⊗ BK)

× E
[
ν̄[k]ν̄T [k]

]
(IN ⊗ BK)T + Q (15)

where e−
i = X − X̂−

i ∈ R
2nN,Q = diag{Q, . . . , Q} ∈

R
2nN×2nN , and E[ν̄ν̄T ] = diag{(L1 ⊗ I2n)R(L1 ⊗

I2n)
T , . . . , (LN ⊗ I2n)R(LN ⊗ I2n)

T} ∈ R
2nN×2nN .

The updated state is calculated from the predicted state and
the new measurement at time step k + 1. Using (3), the mea-
surement residual, denoted by z̃i ∈ R

2n|Ni|, is represented as
follows:

z̃i[k + 1] = zi[k + 1] − Hi[k + 1]X̂−
i [k + 1]

= Hi[k + 1]e−
i [k + 1] + Hi[k + 1]νi[k + 1]. (16)

The residual covariance is defined as follows:

Si[k + 1] := E
[
z̃i[k + 1]z̃T

i [k + 1]
]

= Hi[k + 1]�−
i [k + 1]HT

i [k + 1]

+ Hi[k + 1]RHT
i [k + 1]. (17)

The updated estimation of X[k + 1] is given by the following:

X̂i[k + 1] = X̂−
i [k + 1] + Gi[k + 1]z̃i[k + 1] (18)

Gi[k + 1] = �−
i [k + 1]HT

i [k + 1](Si[k + 1])−1 (19)

where Gi is the Kalman gain. The update of the state estima-
tion error covariance is the same as the conventional Kalman
filter method, which can be written compactly as follows:

�i[k + 1] = (I2nN − Gi[k + 1]Hi[k + 1])�−
i [k + 1]. (20)

Remark 1: The above-distributed estimation process can
be considered an alternative derivation of the sensing-based
distributed estimation algorithm described in [29].

Remark 2: The developed system is designed in discrete-
time but can be readily extended to continuous-time consider-
ing a difference in the state and covariance update between
discrete-time and continuous-time systems in the Kalman
filter [33].

Remark 3: Assumption 1 requires that the information on
the MAS, such as the dynamic model and process and
measurement noise characteristics (which is utilized in the
prediction stage of the estimation) should be given as the
prior knowledge. Such knowledge is usually considered as
the fundamental information for implementing general state
estimators like the Kalman filter. If the information on the
heterogeneous MAS is given as a priori, the proposed estima-
tion algorithm can be readily extended for the heterogeneous
MAS as well.

2) Distributed Estimation-Based Rendezvous Control:
Next, we propose distributed estimation-based rendezvous
control to enhance the performance for a stochastic MAS.
Notably, the estimation algorithm derived in the previous
section (as well as in [29]) only accounts for the distributed
estimation side. When the estimation and control influence
each other, i.e., a control action is based on the estimated
information, a rederivation of the distributed estimation
algorithm is needed to account for the estimation-based
control loop.

The estimation-based control input of the ith agent is
represented as follows:

ui

(
X̂i

)
= K

∑

j∈Ni

(
x̂i,j − x̂i,i

)
(21)

where x̂i,j is the jth agent state estimated by the ith agent.
The MAS dynamics with the estimation-based control is then
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given by

X[k + 1] = (IN ⊗ A)X[k] + (IN ⊗ B)U
(

X̂[k]
)

+ ω[k] (22)

where X̂[k] = [X̂T
1 [k] · · · X̂T

N[k]]T is the vector of the esti-
mated state of the MAS at time step k and U(X̂) =
[uT

1 (X̂1) · · · uT
N(X̂N)]T is the control input of the MAS.

Equation (21) can be reformulated using a Laplacian matrix,
and accordingly the control input of the MAS can be expressed
as follows:

ui

(
X̂i

)
= −K(Li ⊗ I2n)X̂i (23)

U
(

X̂
)

=
[
uT

1

(
X̂1

)
· · · uT

N

(
X̂N

)]T = −(IN ⊗ K)X̂L (24)

where X̂L = [((L1 ⊗ I2n)X̂1)
T · · · ((LN ⊗ I2n)X̂N)T ]T ∈ R

2nN .
By substituting (24) into (22), the MAS dynamics with the
distributed estimation-based rendezvous control becomes

X[k + 1] = (IN ⊗ A)X[k] − (IN ⊗ BK)X̂L[k] + ω[k] (25)

which can be rewritten using the estimation error as follows:

X[k + 1] = (IN ⊗ A)X[k] − (L[k] ⊗ BK)X[k]

+ (IN ⊗ BK)(L[k] ⊗ I2n)X[k]

− (IN ⊗ BK)X̂L[k] + ω[k]

= F1[k]X[k] + (IN ⊗ BK)eL[k] + ω[k]. (26)

The eL in (26) is defined as follows:

eL =

⎡

⎢⎢⎢
⎣

(L1 ⊗ I2n)
(

X − X̂1

)

...

(LN ⊗ I2n)
(

X − X̂N

)

⎤

⎥⎥⎥
⎦

= L′e (27)

where L′ = diag{L1 ⊗ I2n, . . . ,LN ⊗ I2n} ∈ R
2nN×2nN2

and the augmented estimation error e = [eT
1 · · · eT

N]T ∈
R

2nN2
. Substituting (27) into (26) with F2 = (IN ⊗

BK)L′ ∈ R
2nN×2nN2

, (26) can be compactly expressed as
follows:

X[k + 1] = F1[k]X[k] + F2[k]e[k] + ω[k]. (28)

The estimation process addressed in Section III-A1 is mod-
ified to reflect the control schemes based on the estimated
state information, i.e., (21). Without sharing the estimated
state information of the MAS, it is difficult for each agent
to know the conditional expectation of the control input
of the MAS (i.e., E[U(X̂[k])|z0:k

i ]) because it is subject to
the estimated state of the MAS perceived from the individ-
ual agent’s viewpoint. Thus, using the estimated information
known by each agent, the control input of the MAS esti-
mated by the ith agent is defined as (12), which results
in the predicted state of the MAS being equal to (14).
Before deriving the estimation error covariance, the initial aug-
mented estimation error covariance is assumed to satisfy the
following.

Assumption 2: The initial augmented estimation error
covariance, E[e[0]eT [0]] ∈ R

2nN2×2nN2
, is identically set.

Along with Assumption 2, the predicted error covariance is
computed using (28) and (14) as follows:

�−
i [k + 1] = E

[
e−

i [k + 1]e−T
i [k + 1]

]

= F1[k]�i[k]F1
T [k] + F2[k]E

[
e[k]eT [k]

]
FT

2 [k]

+ F1[k]E
[
ei[k]eT [k]

]
FT

2 [k]

+ F2[k]E[e
[
k]eT

i [k]
]
F1

T [k] + Q (29)

where E[eeT ] and E[eieT ] are given as follows:

E
[
eeT] =

⎡

⎢⎢⎢
⎣

�1 �12 · · · �1N

�21 �2 · · · �2N
...

...
. . .

...

�N1 �N2 · · · �N

⎤

⎥⎥⎥
⎦

= � (30)

E
[
eie

T] = [
�i1 · · · �i · · · �iN

]
(31)

where �ij is the cross-covariance between the ith agent and
the jth agent. Substituting (30) into (29)

�−
i [k + 1] = F1[k]�i[k]F1

T [k] + F2[k]�[k]FT
2 [k]

+ F1[k]E
[
ei[k]eT [k]

]
FT

2 [k]

+ F2[k]E
[
e[k]eT

i [k]
]
F1

T [k] + Q. (32)

The updated state from the predicted state follows (16)–(20).
For a recursive iteration of the estimation process, each

agent needs to update �[k] to �[k + 1], representing the esti-
mation error covariance of all agents and its cross-covariance.
This is required in the predicted error covariance of the
next step, which was not needed for the estimation process
described in Section III-A1. As the reason for this, each agent
uses its estimated information for control, so the expected esti-
mation error of other agents from the perspective of the ith
agent is considered to the estimation of the MAS state. To this
end, the cross-covariance is computed as follows:

�ij[k + 1] := E

[
ei[k + 1]eT

j [k + 1]
]

= −Gi[k + 1]Hi[k + 1]�−
ij [k + 1]

− �−
ij [k + 1]HT

j [k + 1]GT
j [k + 1]

+ Gi[k + 1]Hi[k + 1]�−
ij [k + 1]

× HT
j [k + 1]GT

j [k + 1] + �−
ij [k + 1] (33)

where the predicted cross-covariance is

�−
ij [k + 1] := E

[
e−

i [k + 1]e−T
j [k + 1]

]

= F1[k]�ij[k]F1
T [k] + F2[k]�[k]FT

2 [k]

+ F1[k]E
[
ei[k]eT [k]

]
FT

2 [k]

+ F2[k]E
[
e[k]eT

j [k]
]
F1

T [k] + Q. (34)

Remark 4: The updated � calculated by each agent is
always the same insofar as it begins with the same initial
condition based on Assumption 2.

Remark 5: As in [34], many studies are often carried out
under the assumption that the initial covariance of each sen-
sor node is the same. Similarly, introducing Assumption 2 is
merely motivated by the brevity of (29)–(34), which can be
readily rederived with additional notations for different � of
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each agent. Note that the different initial setup does not affect
the stability guarantee of the proposed algorithm as will be
discussed in Section IV.

Remark 6: In (21), the state estimates of direct neighbors
and those outside the sensing range can be used for con-
trol action, making interaction possible between all agents
including non-neighboring agents.

B. Nonlinear Systems

This section expands on a distributed estimation algorithm
used for linear systems for application to nonlinear systems
and proposes an estimation-based nonlinear flocking control
protocol. The system’s nonlinearity comes from the control
input, which is a nonlinear function of the state of the MAS.

1) Distributed State Estimation: The agent’s nonlinear con-
trol input using measurements is expressed as follows:

ui(zi) = fi(X, νi) (35)

where ∀i ∈ V , fi ∈ R
n is a nonlinear function. Thus, the

dynamics of the MAS is the same as in (8) except that U(Z)

is the nonlinear feedback control input of the MAS, which is
represented as follows:

X[k + 1] = (IN ⊗ A)X[k] + (IN ⊗ B)U(Z[k]) + ω[k]

= f (X[k], ν[k]) + ω[k] (36)

where f (X, ν) = (IN ⊗ A)X + (IN ⊗ B)U(Z) ∈ R
2nN is a

nonlinear function and ν[k] = [νT
1 [k] · · · νT

N[k]]T .
Because noises are all assumed to be a zero mean Gaussian,

the predicted state estimate is given from (36) as

X̂−
i [k + 1] := f

(
X̂i[k], 0

)
. (37)

Along with (37), the corresponding predicted error covariance
needs to be computed for the estimation process. Because f is a
nonlinear function, the predicted error covariance is calculated
through the linearization of f as in the extended Kalman filter
(EKF). The predicted error covariance �−

i is given by the
following:

�−
i [k + 1] = Fi[k]�i[k]FT

i [k] + Q (38)

where Fi = [∂f (X, ν)/∂X]|
(X̂i,0)

is the Jacobian matrix of f .
Because the observation dynamics remains linear, the updated
state from the predicted state is the same as in (16)–(20).

2) Distributed Estimation-Based Flocking Control With
Virtual Fully Connected Network: The main idea of this study,
distributed estimation-based nonlinear flocking control, is
presented in this section. Regardless of the proximity network
topology, the proposed method allows each agent to interact
with not only its direct neighbors but also non-neighbors. This
can be accomplished by introducing the concept of a virtual
fully connected network. With the distributed estimation of
the entire MAS states, facilitated by using the same cooper-
ative controller [i.e., the nonlinear flocking controller in (7)]
for all agents, each agent can utilize the state information of
all other agents as if they are obtained through a fully con-
nected network. Note that the proposed approach only utilizes
the observation of neighbors like other conventional distributed
systems. However, the conventional distributed systems do not

Fig. 1. Concept of an estimation-based flocking algorithm.

allow the interaction with non-neighboring agents due to the
limited sensing/communication range.

As a benefit of using the proposed virtual fully connected
interactions, the performance of the proposed flocking algo-
rithm in terms of the converged configuration is similar to
the conventional flocking algorithm (7) with a fully connected
network. Under a fully connected network, the boundary of the
flock configuration can be more tightly controlled, as described
in Section II-D. Fig. 1 shows the concept of the proposed
flocking algorithm using the virtual fully connected network
with distributed estimation.

With the basic structure following the flocking model
described in Section II-D, the distributed estimation-based
flocking control input with a virtual fully connected network
is represented as follows:

ui

(
X̂i

)
= ρ3

N∑

j=1,j �=i

φ1
(
p̂i,ij

)(
v̂i,j − v̂i,i

)

+ ρ4

N∑

j=1,j �=i

φ2
(
p̂i,ij, v̂i,ij

)(
p̂i,j − p̂i,i

)
(39)

where p̂i,j and v̂i,j are the position and velocity of the jth
agent estimated by the ith agent, respectively, and p̂i,ij and
v̂i,ij are the relative position and velocity between the ith and
jth agents estimated by the ith agent. In (39), unlike with the
previous control protocol, the estimated state information of
all agents is used for the control protocol regardless of the
proximity network topology, as mentioned in Remark 6. The
MAS dynamics with the proposed control protocol is the same
as in (22) except that U(X̂) consists of (39).

The prediction process is expressed the same as in (14), i.e.,

X̂−
i [k + 1] := f ′(X̂i[k]

)

= (IN ⊗ A)X̂i[k] + (IN ⊗ B)U
(

X̂i[k]
)

(40)

where f ′(X) = (IN ⊗ A)X + (IN ⊗ B)U(X) and U(X) =
[uT

1 (X) · · · uT
N(X)]T . By calculating the Jacobian matrix of f ′

in (40), the predicted error covariance can be calculated as
(38), i.e., Fi = [∂f ′(X)/∂X]|X̂i

. The update step is the same as
in (16)–(20).
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IV. STABILITY ANALYSIS

In this section, a stability analysis of the proposed estima-
tion algorithm in a linear system is described. The stability
analysis is conducted through a Lyapunov theory in discrete
time, and focuses on finding a suitable Lyapunov function
candidate of the state estimation error ei to be globally asymp-
totically stable in the sense of the Lyapunov. In the stochastic
MAS considered in this article, the estimation error can be
regarded as a super martingale of the Lyapunov functions [35],
which should satisfy the following conditions:

⎧
⎨

⎩

V(ei[k], k) = 0, iff ei[k] = 0
V(ei[k], k) > 0, iff ei[k] �= 0 ∀k
V(ei[k], k) → ∞, iff ei[k] → ∞

(41)

�V(k + 1, k) < 0 ∀k (42)

where �V(k+1, k) := V(E[ei[k+1]|ei[k]], k+1)−V(ei[k], k).
Note that the augmented estimation error e, in the MAS
dynamics (28) couples the estimation error dynamics of each
agent ei, with e. To verify the estimation stability of ei, let us
investigate the relationship between e in the error dynamics
and ei. For the investigation, the proposition of the estimation
analysis in the linear cooperative MAS is first presented as
follows.

Proposition 1: The linear cooperative MAS distributed esti-
mation error covariance �i[k] is positive definite and bounded
for all k > N if the following system is observable [29]:

X[k + 1] = F1[k]X[k]

zi[k] = Hi[k]X[k]. (43)

Lemma 1: Suppose the system given in (43) is observable
and Ci[0], ∀i ∈ V, exists. Then, given the agent dynamics (1)
and the control protocol (21), there exists a linear mapping
between the estimation error of the ith agent, ei, and the
augmented estimation error e, as follows:

e[k + 1] = Ci[k + 1]ei[k + 1]

+ αi[k + 1] ∀i ∈ V ∀k ≥ 0

Ci[k + 1] = F[k + 1]Ci[k]
(Fi,2[k + 1]Fi,1[k]

)−1

αi[k + 1] = F[k + 1]αi[k] + γ [k + 1] − Ci[k + 1]

× (Fi,2[k + 1]F2[k]αi[k] + ζi[k + 1]
)

where Fi,1[k] = F1[k] + F2[k]Ci[k]

Fi,2[k + 1] = I2nN − Gi[k + 1]Hi[k + 1]

ζi[k + 1] = Fi,2[k + 1]ω[k]

− Gi[k + 1]Hi[k + 1]νi[k + 1]

and F[k + 1] = diag
{F1,2[k + 1]F1,1[k]

, . . . ,FN,2[k + 1]FN,1[k]
}

γ [k + 1] =
⎡

⎢
⎣

F1,2[k + 1]F2[k]α1[k] + ζ1[k + 1)
...

FN,2[k + 1]F2[k]αN[k] + ζN[k + 1]

⎤

⎥
⎦.

(44)

Here, Ci ∈ R
2nN2×2nN is a linear transformation matrix, αi ∈

R
2nN2

is a lumped noise that has the characteristics of a white
Gaussian distribution N2nN2(0, Pi), and the initial condition
e[0] = Ci[0]ei[0].

Using Proposition 1 and Lemma 1, the stability of the
proposed distributed estimation algorithm is shown in the
following.

Theorem 1: Given the agent dynamics (1) and the con-
trol protocol (21), the equilibrium point ei = 0, ∀i ∈ V , in
the proposed distributed state estimation algorithm is globally
asymptotically stable if the system (43) is observable.

Proof: The Lyapunov function V : R2nN ×N → R is defined
as follows:

V(ei[k], k) := eT
i [k](�i[k])−1ei[k]

�V(k + 1, k) = V(E[ei[k + 1]|ei[k]], k + 1) − V(ei[k], k).

(45)

Because �i is positive definite and bounded from
Proposition 1, the quadratic form V satisfies the condi-
tions of (41). To compute the conditional expectation of (45),
we consider the estimation error dynamics. The error dynam-
ics consist of two phases: 1) prediction and 2) update. The
prediction of the estimation error of the ith agent is computed
by subtracting the predicted state of the ith agent (14) from
the MAS dynamics (28) with using Lemma 1 as follows:

e−
i [k + 1] = X[k + 1] − X̂−

i [k + 1]

= F1[k]ei[k] + F2[k](Ci[k]ei[k] + αi[k]) + ω[k]

= Fi,1[k]ei[k] + F2[k]αi[k] + ω[k] (46)

where Fi,1[k] ∈ R
2nN×2nN . The update step is done by sub-

tracting the updated estimation (18) with (16) from X[k + 1]
and substituting (46) for e−

i [k + 1] followed as:

ei[k + 1] = X[k + 1] − X̂i[k + 1]

= e−
i [k + 1] − Gi[k + 1]Hi[k + 1]e−

i [k + 1]

− Gi[k + 1]Hi[k + 1]νi[k + 1]

= Fi,2[k + 1]Fi,1[k]ei[k]

+ Fi,2[k + 1]F2[k]αi[k] + ζi[k + 1] (47)

where Fi,2[k + 1] ∈ R
2nN×2nN and ζi[k + 1] ∈ R

2nN . From,
using (47), the conditional expectation is obtained as follows:

E[ei[k + 1]|ei[k]] = Fi,2[k + 1]Fi,1[k]ei[k]. (48)

Then, �V(k + 1, k) can be written as follows:

�V(k + 1, k) = E[ei[k + 1]|ei[k]]T(�i[k + 1])−1

× E[ei[k + 1]|ei[k]] − eT
i [k](�i[k])−1ei[k]

= −eT
i [k]Mi[k + 1]ei[k] (49)

where Mi[k + 1] = (�i[k])−1 − FT
i,1[k]FT

i,2[k + 1](�i[k +
1])−1Fi,2[k+1]Fi,1[k]. To assure �V(k+1, k) < 0, Mi[k + 1]
should be a positive definite matrix. From Lemma 1, the
updated estimation error covariance �i originally related to
e can be derived in terms of ei. The updated and predicted
estimation error covariances of the ith agent are derived using
(20) and (46), respectively, as follows:

�i[k + 1] = Fi,2[k + 1]�−
i [k + 1] (50)

�−
i [k + 1] = E

[
e−

i [k + 1]e−T
i [k + 1]

]

= Fi,1[k]�i[k]FT
i,1[k] + F2[k]Pi[k]FT

2 [k] + Q. (51)
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The updated estimation error covariance can be rewritten using
(17), (19), and (20) as follows:

�i[k + 1] = �−
i [k + 1] − �−

i [k + 1]HT
i [k + 1]

× (
Hi[k + 1]�−

i [k + 1]HT
i [k + 1]

+ Hi[k + 1]RHT
i [k + 1]

)−1
Hi[k + 1]�−

i [k + 1].

(52)

Using the matrix inversion lemma [36], (52) can be rewritten
as follows:

�i[k + 1] =
((

�−
i [k + 1]

)−1 + HT
i [k + 1]

× (
Hi[k + 1]RHT

i [k + 1]
)−1

Hi[k + 1]
)−1

. (53)

After taking the inverse, multiplying �i[k+1] to the left-hand
and the right-hand sides of (�i[k+1])−1 yields the following:

�i[k + 1] = �i[k + 1]
(
�−

i [k + 1]
)−1

�i[k + 1]

+ �i[k + 1]HT
i [k + 1](Hi[k + 1]R

× HT
i [k + 1]

)−1
Hi[k + 1]�i[k + 1]. (54)

Substituting (50) into the right-hand side of (54) yields

�i[k + 1] = Fi,2[k + 1]
(
�−

i [k + 1] + Wi[k + 1]
)FT

i,2[k + 1]

(55)

where Wi[k + 1] = �−
i [k + 1]HT

i [k + 1](Hi[k + 1]RHT
i [k +

1])−1Hi[k+1]�−
i [k+1], which is positive definite. In addition,

(�i[k + 1])−1 can be expressed by the inverse of (55) after
substituting (51) into �−

i [k + 1] as follows:

(�i[k + 1])−1 = (FT
i,2[k + 1]

)−1(Fi,1[k]�i[k]FT
i,1[k]

+ F2[k]Pi[k]FT
2 [k] + Q + Wi[k + 1]

)−1

× (Fi,2[k + 1]
)−1

. (56)

From this, Mi[k+1] can be rewritten by substituting (56) into
(�i[k + 1])−1 as follows:

Mi[k + 1] = (�i[k])−1 − FT
i,1[k]

(Fi,1[k]�i[k]FT
i,1[k]

+ F2[k]Pi[k]FT
2 [k] + Q + Wi[k + 1]

)−1Fi,1[k].

(57)

Multiplying �i[k] with the left-hand and the right-hand sides
of (57) and then applying the matrix inversion lemma gives
the following:

�i[k]Mi[k + 1]�i[k] =
(
(�i[k])−1 + FT

i,1[k]

× (
F2[k]Pi[k]FT

2 [k] + Q + Wi[k + 1]
)−1Fi,1[k]

)−1
. (58)

Multiplying (�i[k])−1 to both sides of (58) gives the
following:

Mi[k + 1] = (�i[k])−1
(
(�i[k])−1 + FT

i,1[k](F2[k]Pi[k]

× FT
2 [k] + Q + Wi[k + 1]

)−1Fi,1[k]
)−1

(�i[k])−1. (59)

Because (�i[k])−1 � 0 and F2[k]Pi[k]FT
2 [k] + Q + Wi[k +

1] � 0, Mi[k + 1] should be positive definite. Therefore, the

Lyapunov function satisfies (41) and (42), meaning that the
estimation error is globally asymptotically stable.

Remark 7: It is worth noting the proof of Theorem 1
requires that the entire MAS network topology is fixed and is
known to individual agents. This is to show that the estimation
error is theoretically asymptotically stable under the system
satisfying the observability condition. In practice, however,
the sensing-based estimation may not be able to access the
network topology information, which is problematic especially
for the time-varying network case. One way to circumvent this
difficulty is employing the virtual fully connected network
topology in the estimation process. Then, although the esti-
mation accuracy degrades due to the discrepancy between
true network and virtual network, the estimation error covari-
ance is still bounded and thus guaranteeing the estimation
stability in the stochastic sense as long as the observability
condition is satisfied. A rigorous proof and analysis on this
remain as future work. Furthermore, when communication is
available, agents can exchange their local network information
with neighbors, thereby estimating the true network topology
in a distributed manner as in [37]. The proposed method can
exploit this while retaining the advantage in communication
overhead, i.e., estimating the other agents’ state based on local
observation and only communicating the network topology
information.

Remark 8: For the distributed control side, even if the true
network topology is unavailable, we could adopt the state esti-
mate information based on the virtual fully connected network.
This is well demonstrated in the nonlinear flocking control
scenario, where the individual agents only process the local
observation as in (16)–(20) without needing true network
topology information, which is indeed time varying.

Remark 9: Subject to nonlinear system dynamics, the sta-
bility analysis of the discrete-time EKF was carried out in [38].
In [38, Th. 3.1], the estimation error of a nonlinear system is
exponentially bounded in mean square almost surely if the
initial estimation error and noise terms are small enough. In
this theorem, there are three assumptions: 1) the linearization
matrix is bounded and nonsingular; 2) the Riccati difference
equation (which is the error covariance in the linear case)
remains positive definite and bounded; and 3) the high-order
term from the linearization is bounded. We argue that the sta-
bility of the proposed distributed estimator for the nonlinear
MAS can be sketched in the similar fashion as the EKF case.
First, by linearizing ei (which is a nonlinear function of the
state) with respect to the estimated state, we can have a simi-
lar expression to (46) except that there is additional high-order
terms from linearization. Then, the relationship between ei and
e can be expressed similarly as (44) where αi now includes
both the lumped noise and high-order terms. If the individual
estimation error ei is stable (which can be easily shown by
[38, Th. 3.1]), there is a need that Ci[k] of (44) is bounded
for the augmented estimation error e to be bounded. This
assumption can be satisfied if Ci[0] is bounded. As a result,
the distributed estimation error of the nonlinear system in
which the estimated information is utilized in the control pro-
tocol (39) is exponentially bounded in the mean square almost
surely if the aforementioned assumptions hold. More rigorous
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TABLE I
SIMULATION PARAMETERS

stability analysis of the proposed distributed estimation for
nonlinear systems remains as future study.

V. NUMERICAL SIMULATION

In this section, the numerical simulation results of the
proposed estimation-based distributed control are presented.
The parameters used in the simulations are listed in Table I.

In general, although the larger rendezvous control gains
(ρ1 and ρ2) achieve faster convergence to consensus, it must
be set sensitively in consideration of the system’s stability
and other conditions. If the position feedback gain ρ1 is too
large compared to the velocity feedback gain ρ2, for exam-
ple, unnecessary fluctuations in the agent’s movement may
occur, resulting in poor control performance. Similarly, for
stable flocking convergence, the gains ρ3 for velocity consen-
sus and ρ4 for distance control should be appropriately set,
and the gain ρ5 should be greater than ρ6 [19].

Besides, the performance of the proposed estimation-based
control protocol highly depends on the estimation accuracy. In
particular, as the improper setting of the initial state estimate
and error covariance can cause disconnection of the network in
the early configuration of the MAS, the initial state estimate,
and error covariance should be carefully selected.

A. Rendezvous Control

Fig. 2 shows the estimation errors and trajectories of the
MAS with the proposed rendezvous control algorithm under
the process noise covariance of I2n and the measurement
noise covariance of I2nN . Considering the nature of a ren-
dezvous, it is difficult to confirm the estimation performance
of non-neighbors because all agents become neighbors of
each other as they get closer. Thus, in this simulation, an
estimation-based rendezvous control is conducted using a fixed
network topology that is initially set. The color dots repre-
sent the individual agents in the subfigures. For example, the
orange dot in Fig. 2(a) corresponds to the agent in Fig. 2(b),
which has an orange-colored trajectory. Fig. 2(a) depicts the
MAS network topology with a circle representing each agent’s
sensing/communication range and solid lines connecting the
neighbors. The initial positions of the agents are chosen to
meet the connectivity and observability requirements. The tra-
jectory of the agents when using the proposed rendezvous
algorithm is depicted in Fig. 2(b). Because rendezvous control
aims to ensure that all agents have the same position and veloc-
ity, the MAS achieves the desired configuration, as shown in
Fig. 2(b). Fig. 2(c) shows the position estimation error of the

Fig. 2. Performance of rendezvous control with the distributed estimation
under a fixed network topology. (a) Network. (b) Trajectory. (c) Position
estimation error. (d) Statistical position estimation error.

Fig. 3. Rendezvous control performance comparison. (a) Position standard
deviation. (b) Velocity standard deviation.

MAS computed by each agent. It is clear that the estimation
errors decrease initially and converge to certain bouded values.
Fig. 2(d) shows the statistical position estimation error which
is the square root of the trace of the estimation error covari-
ance. Fig. 2(c) and (d) show that the estimation error and the
statistical estimation error are similar.

Fig. 3 shows the root mean square standard deviation
(STD) of the position and velocity of the MAS to verify
the performance of the proposed rendezvous algorithm. The
STD is averaged from Monte Carlo simulations of 50 runs
with random initial positions. For comparing the conventional
rendezvous algorithm using the measurement [i.e., (5)] and
the proposed estimation-based rendezvous algorithm, process
noise covariance is set to I2n and the measurement noise
covariance is set to 100I2nN . As shown in Fig. 3, the STD of
the position and velocity of the estimation-based rendezvous
control is smaller than that of the conventional method at the
converged state. This result shows a clear advantage of using
the proposed method to reach a second-order consensus for
stochastic systems.

B. Flocking Control

Next, the performance of the proposed estimation-based
control algorithm is validated by applying it to the nonlinear
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Fig. 4. Performance of flocking control with the distributed estimation
under a time-varying network topology. (a) Initial network. (b) Final network.
(c) True trajectory. (d) Estimated trajectory. (e) Position estimation error for
each agent from the first agent’s perspective. (f) Statistical position estimation
error for each agent from the first agent’s perspective.

flocking problem. The noise levels are the same as in the
previous rendezvous problem. Fig. 4(a) shows the initial
network of agents and Fig. 4(b) shows the network of agents
after applying the proposed flocking algorithm for a certain
time. It is worth noting that the final network is not a fully
connected graph. Fig. 4(c) shows the trajectory of agents using
the proposed flocking algorithm. Fig. 4(d) is the trajectory of
all agents estimated by agent 1 (� symbol). The agents marked
with a © symbol indicate the neighbors of agent 1, and the �
agents indicate non-neighbors. This shows that the estimated
trajectories of both neighboring and non-neighboring agents
in Fig. 4(d) are close to the true trajectories in Fig. 4(c). The
position estimation errors of the other agents from agent 1 are
shown in Fig. 4(e). The estimation errors of agent 1’s non-
neighboring agents (i.e., agents 2 and 4) are greater than the
neighboring agents, but they remain within a specific bound.
Fig. 4(f) depicts the statistical position estimation errors of
the other agents from the perspective of agent 1. The error
covariance of agents 2 and 4 are greater than those of the
neighboring agents; however, when agents 2 and 4 temporar-
ily come into the sensing/communication range of agent 1, the
error covariances decrease sharply.

Fig. 5 shows the root mean square STD of the position
and velocity based on Monte Carlo simulations with 50 runs.

Fig. 5. Flocking control performance comparison. (a) Position standard
deviation. (b) Velocity standard deviation.

Fig. 6. Converged flock configuration. (a) Conventional flocking algorithm.
(b) Proposed flocking algorithm.

The process noise covariance is set to I2n and the mea-
surement noise covariance is set to 10I2nN . The STD of
the position and velocity are shown in Fig. 5(a) and (b),
respectively, when comparing three cases: 1) a conventional
flocking algorithm [i.e., (7)]; 2) a conventional flocking algo-
rithm with a fixed fully connected network topology at all
times; and 3) the proposed estimation-based flocking algo-
rithm through a virtual fully connected network. For cases
1) and 3), the agent’s neighbors are changed (i.e., a time-
varying topology). From Fig. 5(a) and (b), one can easily
see that agents are densely converged with smaller converged
velocity STD using case 2) as compared to case 1). Notably,
the position and velocity of case (iii) STDs are similar to
those from the ideal fully connected case 2), as shown in
Fig. 5.

Fig. 6(a) and (b) show the converged configuration reached
by the conventional flocking algorithm and the proposed
estimation-based flocking control with a virtual fully con-
nected network, respectively. As mentioned in Section II-D, at
the converged configuration with the fully connected network
topology, the agent can be located within the radius of R
from the center of all agent positions [i.e., the center of
mass (CoM)]. However, if the fully connected network con-
dition is not satisfied, the conventional flocking algorithm
cannot achieve the desired flock configuration at a converged
state, as shown in Fig. 6(a). In contrast, by the virtual fully
connected network, the proposed estimation-based flocking
algorithm can form the desired configuration even within a
limited sensing/communication range (i.e., not a fully con-
nected network topology), as shown in Fig. 6(b). From the
results of Figs. 5 and 6, the proposed estimation-based flock-
ing algorithm achieves a similar performance as a conventional
flocking algorithm with a fully connected network topology
while overcoming the network topology constraints by creating
a virtual network.
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VI. CONCLUSION AND FUTURE WORK

In this article, an estimation-based distributed control proto-
col was proposed to improve the performance of the stochastic
MAS. A distributed estimation algorithm was proposed to
reduce communication overhead between interagents by using
only local sensing information while estimating the states
of other agents beyond the sensing range. Furthermore, the
proposed distributed estimation algorithm allows for virtual
interactions between non-neighbors as if all agents were fully
connected via a virtual network. The stability of the proposed
distributed estimation algorithm is proved theoretically, and
numerical simulations demonstrate that the estimation-based
control protocol can significantly improve the performance of
the cooperative control of the stochastic MAS. It is shown, in
particular, that the estimation-based flocking control protocol
with a virtual fully connected network can achieve the desired
flock configuration despite the limited sensing/communication
range, which is not the case with a conventional flocking
approach. This demonstrates the algorithm’s utility, espe-
cially in communication-limited environments. Future studies
will include a stability analysis of the proposed distributed
estimation of the nonlinear system. In addition, since this
study incorporates independent and identically distributed
(i.i.d) white Gaussian random noise into the system dynam-
ics as stochastic uncertainty, further stochastic peculiarity will
be considered as future work. Besides, network connectiv-
ity preservation and obstacle avoidance will be considered
for the rendezvous or flocking algorithm for obstacle-rich
environments.

APPENDIX

PROOF OF LEMMA 1

It can be shown through mathematical induction. Suppose
the estimation error at time step k satisfies (44). To
show (44) satisfied at time step k + 1 with the defini-
tions of Ci[k + 1] and αi[k + 1], augmented estimation
error, e, which concatenate (47) for all agents i ∈ V
together can be represented using (44) and ei[k] of (47) as
follows:

e[k + 1] = F[k + 1]e[k] + γ [k + 1]

= F[k + 1]Ci[k]ei[k] + F[k + 1]αi[k] + γ [k + 1]

= Ci[k + 1]ei[k + 1] + αi[k + 1] (60)

where F[k + 1] ∈ R
2nN2×2nN2

, γ [k + 1] ∈ R
2nN2

. Note that
F−1

i,2 exists by virtue of �i � 0. Furthermore, considering
lim�t→0 Fi,1 = I2nN , there exists F−1

i,1 in general. Therefore,
if the initial linear transformation matrix Ci[0] for any i ∈ V
exists, Lemma 1 holds.

It is worth noting that there exist Ci[0] for all i ∈ V that sat-
isfies �[0] = Ci[0]�i[0]CT

i [0]. In addition, since the lumped
noise αi in (44) is the weighted sum of the process and mea-
surement noises, Pi[k] with the initial Pi[0] = 02nN2 can be
updated using the following relationship:

E

[
ζi[k]ζ T

j [k]
]

=
⎧
⎨

⎩

Gi[k]Hi[k]RHT
i [k]GT

i [k]
+ Fi,2[k]QFT

i,2[k], if i = j
Fi,2[k]QFT

j,2[k], otherwise

E

[
ζi[k + 1]ζ T

j [k]
]

= 0

E

[
ζi[k + 1]αT

j [k]
]

= 0

where ∀i, j ∈ V and ∀k.
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