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Continual Learning for Traversability Prediction
with Uncertainty-Aware Adaptation

Hojin Lee, Yunho Lee, Daniel A Duecker, and Cheolhyeon Kwon

Abstract—Traversability prediction is a critical component
of autonomous navigation in unstructured environments, where
complex and uncertain robot-terrain interactions pose significant
challenges such as traction loss and dynamic instability. Despite
recent progress in learning-based traversability prediction, these
methods often fail to adapt to novel terrains. Even when
adaptation is achieved, retaining experience from previously
trained environments remains a challenge, a problem known as
catastrophic forgetting. To address this challenge, we propose
a continual learning framework for traversability prediction
that incrementally adapts to new terrains using a generative
experience recall model. A key virtue of the proposed framework
is two folds: i) retain prior experience without storing past data;
and ii) incorporate the uncertainty of the generated samples
from the recall model, enabling uncertainty-aware adaptation.
Real-world experiments with a skid-steering robot validate the
effectiveness of the proposed framework, demonstrating its ability
to adapt across a series of diverse environments while mitigating
catastrophic forgetting.

Index Terms—Continual Learning, Planning under Uncer-
tainty, Field Robots, Machine Learning for Robot Control

I. INTRODUCTION

AUTONOMOUS navigation in unstructured environments
poses significant challenges due to varying terrain

traversability, making traversability prediction a central re-
search focus [1]. Traditionally, traversability prediction has
been approached by crafting rules based on terrain geom-
etry [2] and semantic context [3]. However, these methods
often fail to capture complex robot-terrain interactions. Re-
cently, learning-based methods have offered promising solu-
tions by leveraging driving data without relying on handcrafted
traversability rules [4].

While the learning-based traversability prediction methods
perform well in conditions similar to the training environment,
they often generalize poorly when deployed in novel terrains
[5]. To address this limitation, adaptation techniques have been
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Fig. 1: Continual adaptation across different types of terrains without access
to past data. The robot incrementally updates its model while retaining
experience for reliable traversability prediction.

proposed to update traversability models when encountering
novel terrain. [6]. However, such adaptation often leads to
catastrophic forgetting, where newly acquired experience over-
writes prior experience, resulting in degraded performance in
previously trained environments.

To facilitate adaptation without catastrophic forgetting,
strategies such as regularization-based continual learning and
dynamic architectural methods have been explored [7]. Among
these methods, experience replay-based continual learning has
been widely adopted in traversability learning, as it enables
models to update by reusing past data without requiring com-
plex optimization objectives or architectural changes [8], [9].
These methods incrementally expand memory or selectively
store data for experience replay. However, they are often
hindered by high memory costs and/or the potential loss of
valuable information during data selection.

To enable adaptation without losing prior experience
and without relying on memory-demanding replay mecha-
nisms, we propose a novel continual learning framework
for traversability prediction that features uncertainty-aware
adaptation. This framework integrates sensory environmental
information and robot state information as input modalities,
effectively learning to predict both traversability and its asso-
ciated uncertainty. A key attribute of the proposed framework
is a generative experience recall model, which retrieves prior
experience to guide continual updates of both traversability
prediction model and itself. In this way, prior experience
can be retained without needing memory for storing past
data. The generative recall model is further empowered by an
uncertainty-aware adaptation mechanism, whereby the uncer-
tainties of recalled samples are evaluated so that trustworthy
samples are used to update the recall model. Building on
this foundation, the trained traversability prediction model is
integrated into a model predictive control (MPC) framework
to navigate a robot across a series of diverse environments.

These design choices enable a continual learning frame-
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TABLE I: Comparison of Learning-based Traversability Prediction Methods with Adaptation Capability.

Input modality Adaptation technique Prior-experience memory Uncertainty modeling
[6] Vision Adaptation with recent experience N/A Epistemic
[9] Vision Experience replay Fixed-sized memory Aleatoric
[8] Vision Experience replay Incremental dynamic memory -
Proposed Vision, geometry, dynamics Generative experience replay N/A Aleatoric, epistemic

work for traversability prediction that exploits a generative
experience recall model for effective (i.e., retention of prior
experience), efficient (i.e., no need to store past data), and
reliable (i.e., uncertainty-aware) update. Real-world experi-
ments with a skid-steering robot confirm the effectiveness of
the proposed framework, showing its adaptability across di-
verse environments while retaining performance in previously
trained environments. The main contributions are as follows:

• We propose an uncertainty-aware traversability prediction
method that associates terrain features with the robot
dynamics to capture complex robot-terrain interactions.

• We introduce a continual learning framework leveraging
generative experience recall and an uncertainty-aware
adaptation mechanism to retain prior experience while
adapting to novel environments.

• Real-world experiments using a skid-steering robot val-
idate the proposed framework, demonstrating persis-
tent navigation performance while learning uncertain
traversability across diverse environments.

II. RELATED WORK

A. Learning-based Traversability Prediction

Learning-based methods have emerged as a powerful al-
ternative to traditional rule-based methods in traversability
prediction. They rely on real or simulated data to model
complex robot-terrain interactions with minimal supervision
[2]. A critical design choice in prediction models is the input
data modality, which directly impacts the model’s ability to
comprehend underlying dynamics. Geometry features are com-
monly used [2], but they are insufficient to capture semantic
terrain characteristics. To address this, the Learning Applied
to Ground Vehicles (LAGR) program exerted pioneering effort
on employing visual features for traversability prediction [3].

Learning terrain geometry and visual features may not be
sufficient, since traversability is substantially influenced by the
robot’s state and dynamics. Some methods attempt to exploit
proprioceptive sensor data to capture this influence, such as
measuring traversability in terms of vibration level [10]. How-
ever, they still fall short in fully representing traversability,
making it difficult to assess the admissible states for navigat-
ing in a given terrain. To comprehend the interdependencies
between the robot’s state and terrain features in traversability
prediction, [11] encompasses the robot’s speed, inertial sensor
data, and terrain visual information to establish a forward
kinematics model. This model can predict the robot’s dynamic
response on the terrain, interpreting its traversability. A major
limitation of this approach, however, is the lack of uncertainty
modeling, which degrades the robustness and reliability of
traversability predictions. Furthermore, the aforementioned
learning-based methods often fail to generalize when deployed
in environments that differ from the training conditions. In

response to this shortcoming, we propose a continual learning-
based framework that combines terrain features and robot state
information for traversability prediction, while also taking into
account uncertainty.

B. Adaptation for Traversability Prediction
Learning-based traversability prediction faces challenges in

novel environments that differ from the trained environment.
Adaptation methods address these challenges by updating the
model with newly collected data, focusing on rapid adaptation
to new environments [6]. However, they overlook retaining ex-
perience from previously trained environments during updates.
This leads to degraded navigation performance when the robot
is deployed in previous environments.

Experience replay mechanisms have been proposed to ad-
dress this issue by storing past data in a memory buffer and
replaying it alongside newly acquired data [7]. [8] employs
an incremental replay buffer that clusters visual features,
but its memory footprint grows with environmental diversity,
limiting scalability in long-term deployment. In contrast, [9]
uses a fixed-size replay buffer, carrying the risk of discarding
valuable information when adding new data. These meth-
ods present a fundamental trade-off between scalability and
representational capacity, making it difficult to retain prior
experience across diverse environments. Moreover, neither [8]
nor [9] models epistemic uncertainty, which is essential for
assessing prediction confidence in unfamiliar environments.
They also primarily rely on terrain appearance while neglect-
ing the influence of robot dynamics on traversability, limited
in capturing the complexity of robot–terrain interactions.

To address the shortcomings in experience replay mech-
anisms, generative model-based continual learning offers an
alternative by synthesizing past data from learned repre-
sentations, thereby eliminating the need to store past data
and supporting scalable adaptation to diverse environments
[7]. While offering notable advantages, such methods often
fail to account for the uncertainty associated with generated
samples, which undermines the prediction model’s updates and
potentially compromises performance. To this end, we propose
a framework that accounts for the uncertainty of the generated
samples and facilitates reliable adaptation to new data and
retention of prior experience.

To provide a comparative overview, Table I summarizes key
aspects of the representative traversability prediction methods
with adaptation, including the proposed framework.

III. PRELIMINARIES

A. Robot Dynamics with Traction Parameters
Let us consider a discrete-time dynamics for a ground robot

described by:
xk+1 = f(xk, uk, ξk),
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Fig. 2: Overview of the proposed framework. (a) Deployment phase: uncertainty-aware traversability prediction and navigation. (b) Continual learning phase:
uncertainty-aware model adaptation to new environments via generative experience recall.

where xk represents the robot’s state, uk is the control
input, and ξk denotes the traction parameter at time step
k, accounting for variability in robot-terrain interactions. f
is modeled by the following unicycle-based kinematic as it
effectively captures the dynamics of a wide range of ground
robots, including skid-steering and legged platforms:pxk+1

pyk+1

θk+1

 =

pxkpyk
θk

+∆t ·

ξxk · vcmd
k · cos(θk)

ξxk · vcmd
k · sin(θk)
ξzk · ωcmd

k

 , (1)

where the state vector xk = [pxk, p
y
k, θk]

⊤ represents robot’s
X−Y position in global frame and its yaw angle. The control
input uk = [vcmd

k , ωcmd
k ]⊤ consists of the linear and angular

velocity commands, and ∆t > 0 denotes the sampling time.
The traction parameters ξk = [ξxk , ξ

z
k]

⊤ ∈ R2 account for the
linear and angular discrepancies between the commanded and
actual velocities due to uncertain robot-terrain interactions.
Without loss of generality, we consider these discrepancies
as a measure of traversability [12].

B. Planning with Uncertain Traversability Prediction

In unstructured environments with varying traversability, the
navigation problem involves determining the optimal control
input sequence u∗

k:k+T−1 that minimizes the robot’s navigation
cost over a receding horizon of length T [12]. Given the state
xk, and a navigation cost function C, the receding horizon
stochastic optimal control problem can be formulated as:

min
u0:T−1

E[C(x0:T , u0:T−1)]

s.t. x0 = xk,

xt+1 = f(xt, ut, ξ̂t), ∀t ∈ {0, · · · , T − 1}

(2)

where ξ̂t ∼ P(ξ|xt) represents the distribution of traction
at time step t, which can be predicted by the traversability
prediction model. To solve (2), we utilize a sampling-based
MPC method, leveraging its parallelizability on GPUs for real-
time computation [13].

C. Continual Learning Problem Formulation
To reliably codify ξ̂ across different environments, we

tackle the problem of domain-incremental continual learning
for traversability prediction [7]. We define the traversability
prediction model T : Rq → R2 × R2

>0 as a mapping from
input features, comprising the robot’s state and terrain features,
to the mean and variance of the Gaussian distributions over
traction parameters ξ̂ ∼ N (µ(·), σ2(·)), where (µ(·), σ2(·)) =
T (·). The goal is to train a sequence of models T 1, · · · , T i−1,
such that T i adapts to new environments encountered during
the ith deployment, while retaining experience from previ-
ous (1st, · · · , i− 1th) deployments. In this setting, the input
distribution (environmental terrain characteristics) may shift
over deployments, whereas the underlying task of learning
(traversability prediction model) remains consistent.

At each deployment phase i, the robot collects data Di in
the corresponding environment, forming a sequential dataset
D1:i = {D1, . . . ,Di}. Ideally, the model T i would be trained
on the full dataset D1:i, but storing and accessing all the
past data is impractical on resource-constrained platforms.
Instead, our continual learning framework aims to update T i−1

using only Di, with the goal of producing T i that preserves
performance without direct access to D1:i−1.

IV. ALGORITHM DEVELOPMENT

This section presents the proposed continual learning frame-
work for traversability prediction, empowered by uncertainty-
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aware adaptation, as depicted in Fig. 2.

A. Self-Supervised Traversability Labeling

To train the traversability prediction model, we collect
samples of traction parameters ξ while navigating over dif-
ferent terrain environments, including both traversable and
non-traversable regions. Inspired by the nonlinear moving-
horizon estimator in [4], we utilize odometry to estimate the
robot’s state x and use this information to estimate the traction
parameters ξ. Specifically, we employ an Extended Kalman
Filter (EKF) where the traction parameters are modeled as
a random walk process: ξk+1 = ξk + ν. Here, ν is zero-
mean Gaussian process noise that accounts for gradual vari-
ations over time [14]. Using (1) along with state xk+1, the
EKF iteratively refines the traction parameter estimates ξk,
establishing datasets that are used to train the traversability
prediction model.

B. Terrain Feature Processing

We use RGB images and 3D point clouds to build a
multi-modal terrain representation based on [15]. The point
clouds are processed into an elevation grid map, capturing
the geometric properties of the terrain. Simultaneously, visual
features are extracted from images using a pre-trained DINOv2
backbone [16], producing pixel-wise feature embeddings.
However, projecting these high-dimensional visual features
(e.g., 384 dimensions for the DINOv2-small model) into a grid
map incurs substantial computational and memory overhead,
making it impractical for real-time use on mobile robots.

Fig. 3: Grid mapping of the terrain feature ϕ, based on geometric and visual
information of the corresponding terrain patches beneath the robot’s four
wheels.

To address this, we employ an autoencoder network to
compress the high-dimensional visual feature embeddings
from DINOv2 into a low-dimensional latent feature. The
network is trained in an unsupervised manner on the original
dense DINOv2 features from a large-scale off-road dataset by
optimizing reconstruction loss. Once trained, the encoder part
is deployed for real-time processing, receiving dense features
from the DINOv2 backbone and generating compact, low-
dimensional visual features to be integrated into the multi-
modal grid map. As a result, terrain features ϕ ∈ Rp, impli-
cating both geometric and visual information, are assigned to
individual grids in the map, as illustrated in Figure 3. These
terrain features are stored in a local grid map centered on

the robot’s pose, capturing terrain characteristics over a fixed
window for traversability model training and prediction.

C. Robot-terrain Interaction Dataset

Based on the labeled traction parameter data, driving data,
and terrain feature data, we construct a robot-terrain interaction
dataset:

D = {(ϕj , vj , ξj) | j = 1, . . . ,B} ,

where each sample consists of the terrain feature vector
ϕj , the robot’s velocity state vj , and the labeled traction
parameter ξj at time step j. B denotes the total number
of samples in the dataset. The terrain feature vector ϕj =[
ϕ⊤
j,1, ϕ

⊤
j,2, ϕ

⊤
j,3, ϕ

⊤
j,4

]⊤
consists of multiple terrain features

extracted at different contact points. For instance, in a four-
wheeled robot, each ϕj,i corresponds to the terrain features at
the ith wheel position (pxj,i, p

y
j,i) at time step j. The robot’s

velocity state vj =
[
vxj , w

z
j

]⊤
includes the linear and angular

velocities estimated by odometry. To construct the dataset, we
retrieve the stored local terrain grid maps for each recorded
robot pose. For each map, we project the trajectory history
within a local window and extract terrain features at the
wheel contact points along the trajectory. These features are
then paired with the corresponding robot velocity and traction
estimates to form the dataset. Samples with missing terrain
features at any wheel contact point due to being outside the
sensor field of view are discarded.

D. Uncertainty-aware Traversability Prediction

Given the dataset D, the model T is trained to predict the
traction parameter as ξ̂k = T (ϕk, vk), where ϕk represents
the terrain features, and vk denotes the robot velocity state
at time step k. To account for uncertainty, we model T as
a probabilistic ensemble model capable of capturing both
aleatoric and epistemic uncertainties [17]. Each ensemble
member receives the concatenated terrain feature ϕk and
velocity state vk, as input and is trained independently. All
ensemble members share the same architecture, comprising
a multi-layer perceptron with fully connected layers of sizes
[16, 32, 32, 16], each followed by a LeakyReLU non-linear
activation function. The mth ensemble model Tm outputs the
traction parameter as a Gaussian distribution:

ξ̂k,m ∼ N(µk,m, σ2
k,m), where [µk,m, σ2

k,m] = Tm(ϕk, vk).

Based on predictions from M ensemble models, we compute
the final prediction as:

ξ̂k ∼ N(µk, σ
2
k), where [µk, σ

2
k] = T (ϕk, vk), (3)

with the mean and variance computed as:

µk =
1

M

M∑
m=1

µk,m, σ2
k = σ2

k,ale + σ2
k,epi,

where the variances from aleatoric σ2
k,ale and epistemic σ2

k,epi
uncertainties are respectively given by:

σ2
k,ale =

1

M

M∑
m=1

σ2
k,m, σ2

k,epi =
1

M

M∑
m=1

(µk,m − µk)
2.
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E. Uncertainty-Aware Adaptation with Experience Recalling

To adapt the traversability prediction model across diverse
environments, we leverage a generative model–based continual
learning framework. The generative model recalls past in-
put–output samples for experience replay without storing raw
data. Before delving into the details of our continual learning
framework, the initial step is established as follows.

1) Initial training of the traversability prediction model:
we begin with the initial model, T 1, trained on the first
environment dataset D1, which serves as the foundation for
adaptation. This initial model T 1 is trained by minimizing the
Negative Log-Likelihood (NLL) loss, denoted as LNLL, which
captures the likelihood of the estimated traction parameters
given the corresponding terrain features and the robot’s dy-
namics states, i.e., velocity.

2) Initial training of the generative experience recall model:
we design a generative recall model R1, which randomly
synthesizes the prediction model’s input and output data,
denoted as Drecall. As with the prediction model, the input
data consists of two components: terrain features ϕrecall and
robot dynamic states, i.e., vrecall. Leveraging the fact that
velocities are physical quantities with bounded ranges, we
design a conditional recall process that first samples velocity
and then generates corresponding terrain features conditioned
on it. To accomplish this, we adopt a Conditional Variational
Autoencoder (CVAE) [18], which consists of an encoder and a
decoder, denoted as qenc(z|ϕ, v) and pdec(ϕ|v, z), respectively.
Upon training of the CVAE, the decoder is used to recall
features ϕrecall conditioned on a sampled velocity state vrecall

and latent variable z. During recall, both vrecall and z are
randomly sampled, where vrecall respects the velocity limits
defined by the robot’s hardware specifications, and z is drawn
from a Gaussian prior distribution. Next, to synthesize the
output data, the trained traversability prediction model T
processes the recalled inputs as follows:

ξrecall ∼ N (µrecall, (σrecall)2),

where [µrecall, (σrecall)2] = T 1(ϕrecall, vrecall). This prediction
includes σrecall as a measure of uncertainty, reflecting the
model’s confidence in its generated samples. Specifically, a
higher σrecall indicates that the recalled sample likely originates
from an environment that was not well represented in D1 for
training T 1.

3) Uncertainty-aware traversability prediction model up-
date: we update the traversability prediction model from T i−1

to T i for i ≥ 2, using only the collected dataset Di and
the generative recall model Ri−1. First, we generate a batch
of recalled input-output samples using Ri−1, overwriting the
dataset Drecall. These recalled samples are then combined with
the newly collected dataset Di to update the model T i by
minimizing the following loss function:

LT i = LNLL(Di) + λLadapt(Drecall), (4)

where λ is a scaling constant. The first term, LNLL(Di),
captures the experience obtained from newly acquired data.
The second term, Ladapt(Drecall), aims to retain prior experi-
ence through recalled samples that imitate past data. This is

achieved by aligning the distributions of the predicted and
recalled output distributions using the Jensen–Shannon (JS)
divergence as a distance measure, defined as follows:

Ladapt(Drecall) :=
∑
Drecall

1

2
KL

(
T i(ϕrecall, vrecall)|ξrecall)

+
1

2
KL

(
ξrecall|T i(ϕrecall, vrecall)

)
,

where KL denotes the Kullback-Leibler (KL) divergence.
This distributional alignment alleviates catastrophic forgetting
of recalled samples and mitigates overfitting to unreliable
samples with higher σrecall, thereby reducing the risk of
erroneous updates.

4) Uncertainty-aware generative experience recall model
update: similar to the prediction model update, we update the
generative experience recall model from Ri−1 to Ri using the
newly collected dataset Di and recalled dataset Drecall, without
explicit access to past data, i.e., Dl−1, ∀l ≤ i. Specifically, we
recall data by randomly sampling input features, denoted as
(ϕrecall, vrecall), using Ri−1. The quality of the recalled samples
is assessed using their uncertainty (σrecall)2, predicted by the
preceding prediction model T i−1. These uncertainty estimates
act as proxies for distributional similarity to real data, enabling
us to identify and filter recalled samples that deviate from
the real data distribution. To this end, we apply a variance
threshold τ to exclude uncertain recalls, yielding the refined
recall dataset:

D̄recall :=
{
(ϕrecall, vrecall)

∣∣σrecall < τ
}
.

We then define the augmented dataset as the union of the
newly acquired data Di and the filtered recalled samples:

Daug := Di ∪ D̄recall. (5)

The generative experience recall model Ri is trained using
Daug, ensuring that only recalled samples with sufficiently
low uncertainty contribute to retaining prior experience while
recently acquired data facilitates adaptation to the new envi-
ronment.

A comprehensive overview of the proposed continual learn-
ing framework with uncertainty-aware adaptation is presented
in Algorithm 1.

Algorithm 1 Continual Learning Framework with
Uncertainty-aware Adaptation

Initialize: Set iteration index i = 1.
Input: Initial dataset D1.

1: Initial train T 1 and R1 (Sections IV.E.1 and IV.E.2).
2: while New dataset Di+1 is acquired do
3: Generate recalled dataset Drecall using Ri and T i.
4: Update T i → T i+1 with (4) (Section IV.E.3).
5: Update Ri → Ri+1 using Daug in (5)

(Section IV.E.4).
6: i = i+ 1.
7: end while
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F. Navigation with Traversability Prediction

Based on the updated traversability prediction model, the
optimal off-road navigation can be formulated as an MPC
problem. The MPC minimizes a cost function associated with
predicted future states as outlined in Section III-B. Specifi-
cally, the objective cost in (2) is defined as:

C(xt, µt, σ
2
t ) = w1Goal(pxt , p

y
t ) + w2σ

2
t + w3|1− µt|,

where Goal(pxt , p
y
t ) encourages progress toward the goal over

a finite horizon, and σ2
t penalizes regions of high predictive

uncertainty stemming from limited environment knowledge
and/or irreducible measurement noise. The slip cost term
|1−µt| encourages the predicted traction to approach 1, repre-
senting ideal alignment between the robot’s actual motion and
the commanded input under the nominal dynamics. Notably,
µt is not constrained to lie within [0, 1], allowing the model to
capture a wider range of robot-terrain interactions. The weights
w1, w2, w3,∈ R+ are tunable scaling factors.

To solve for (2), which is subject to stochastic dynamics f ,
we adopt a mean-propagation strategy for cost approximation,
following the method in [17]. Specifically, the robot dynamics
are propagated using the mean estimates of uncertain traction
parameters. The propagated states are then used to evaluate
the cost function and optimize the control inputs. Under this
strategy, the navigation problem can be expressed as the
following MPC problem:

min
u0:T−1

T∑
t=0

C(xt, µt, σ
2
t )

s.t. x0 = xk,

xt+1 = f(xt, ut, µt), ∀t ∈ {0, · · · , T − 1}
[µt, σ

2
t ] = T (ϕt, vt), ∀t ∈ {0, · · · , T − 1}.

Upon optimization, only the first control u0 is applied to
the robot, while the remaining u1:T−1 are temporarily stored
in a buffer and used as fallback actions if the subsequent MPC
computation fails to meet the desired control frequency.

V. FIELD EXPERIMENT

A. Platform and Dataset Description

The experiments are conducted on a Clearpath Jackal robot,
equipped with an NVIDIA Jetson AGX Orin for onboard
computation, an Ouster LiDAR, and a ZED X stereo camera to
sense its surrounding environment. A Lidar-inertial odometry
[19] provides high-frequency pose and velocity estimates. The
ZED X camera captures both RGB images and depth point
clouds, which are used to extract the terrain features. The
extracted features are encoded into a multi-modal grid map
with a resolution of 0.25 meters [15], and represented as latent
vectors of dimension p = 3, updated at a rate of 20 Hz. An
ensemble of M = 5 models performs traversability prediction.
The entire system is built within the ROS 2 environment. The
control horizon is set to T = 30 with a time step of ∆t = 0.1
seconds, corresponding to a 3-second prediction window. A
batch of 1024 rollouts is used per optimization cycle to support
a control frequency of 10 Hz.

Fig. 4: PCA projection of terrain features ϕ from five distinct environments.

The evaluation of continual learning necessitates diverse
environments, which enables assessment of how well prior
knowledge is retained when adapting to novel environments.
In light of this requirement, we consider five environments
with distinct terrain characteristics: an asphalt trail in a public
park (Dataset D1), a gravel terrain near a river shore (Dataset
D2), a sand area (Dataset D3), a bike path (Dataset D4), and
a forest with dense vegetation (Dataset D5). At each site,
we collected approximately 10 minutes of data by manually
driving through both traversable and non-traversable areas. We
apply Principal Component Analysis (PCA) to the extracted
terrain features ϕ, projecting them into a two-dimensional
space to characterize distributional differences among the
five environments, as illustrated in Figure 4. The projected
features reveal distinct domain shifts that are pertinent to a
domain-incremental continual learning problem, as discussed
in Section III-C.

B. Evaluation Metrics

The traversability prediction model is trained sequentially
on datasets D1 through D5, each corresponding to data col-
lected from Environments 1 through 5. Continual learning
performance is evaluated in terms of adaptation and memory
retention. Both are computed from the prediction performance
of the traction model on test datasets using the Negative Log-
Likelihood (NLL). Let nk,j ∈ R, k ≤ j denote the NLL on
the test set of Dk after training on datasets D1:j . Adaptation
performance at the environment j is given by nj,j , which
measures how well the updated model T j fits Dj . A lower
nj,j indicates better adaptation performance. Memory reten-
tion performance is evaluated using the Forgetting Measure
(FM) [7], defined as fk,j = max(0, nk,j − mini<j nk,i),
which captures the maximum performance degradation on Dk

after training on Dj . A lower FM indicates better experience
retention and improved continual learning performance.

C. Baseline Methods

For comparative analysis, we evaluate the proposed contin-
ual learning framework against five baseline methods:

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2025.3619687

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on October 16,2025 at 07:58:14 UTC from IEEE Xplore.  Restrictions apply. 



LEE et al.: CONTINUAL LEARNING FOR TRAVERSABILITY PREDICTION WITH UNCERTAINTY-AWARE ADAPTATION 7

• Complete-Memory (CM): This upper-bound baseline
trains T i using the full dataset Dj , 1 ≤ j ≤ i, enabling
batch retraining with complete access to past data.

• Incremental-Memory (IMOST) [8]: This method up-
dates T i−1 using an incremental dynamic memory buffer
that stores new samples according to an information-
expansion criterion.

• Fast Adaptation (WVN) [6]: This baseline updates
T i−1 using only the recently acquired data Di, without
considering experience retention.

• LwF-fashion (LwF) [20]: This method uses the model
T i−1 and the recently acquired data Di to retrain T i

without accessing past data. Experience retention is
achieved via distillation by minimizing the KL divergence
between the outputs of T i−1 and T i on Di.

• Naive Generative Rehearsal (NGR): A variant of our
method that updates T i−1 with recalled samples Ri−1

and the recently acquired data Di without the uncertainty-
aware adaptation in Section IV-E4, serving as an ablation
of the threshold τ .

To ensure a fair comparison, all baseline methods are in-
terfaced to take terrain and robot states as inputs and to
output probabilistic traction, as in the proposed framework.
For each method, we identify the hyperparameter setting on the
Pareto front with equal weighting of adaptation and memory
retention.

D. Field Experiment Results and Discussion

1) Evaluation of experience recalling: we begin by as-
sessing the validity of recalled samples generated by the
generative experience recall model Ri during adaptation. The
distributions of the recalled terrain features are visualized
on top of the real terrain features using PCA, as shown
in Figure 5. While the proposed method produces samples
that closely align with the real data distribution, the ablation
method (NGR) generates dispersed samples that poorly align
with real data. These results highlight that the uncertainty-
aware adaptation introduced in Section IV-E4 helps the recall
model produce samples that better reflect collected experience,
supporting more accurate model updates during continual
learning.

Fig. 5: PCA projection of recalled samples alongside real terrain features
collected from Environments 1–5.

2) Evaluation of adaptation performance: as part of the
quantitative evaluation, Table II and Table III report the mean
and standard deviation of NLL and FM over ten training
sessions for each continual learning scenario. The CM method
consistently achieves the lowest forgetting, as it keeps access
to the full dataset throughout training. Among those without
direct access to past data, our proposed method yields the
lowest FM, indicating improved retention of prior experience
while effectively adapting to new environments. The IMOST
method achieves retention performance comparable to, and
occasionally exceeding, our method, but this comes at the
cost of a continually growing memory requirement. This high-
lights the effectiveness of our uncertainty-aware adaptation for
continual learning without storing past data, retaining prior
experience with only the parameters of the prediction and
recall models.

TABLE II: Adaptation statistics during continual learning (mean ± std).

NLL, nj,j Training from D1 to Dj

D1→D2 D1→D2→D3 D1→· · ·→D4 D1→· · ·→D5

Test j D2 D3 D4 D5

Method

CM 0.17 ± 0.15 -0.61 ± 0.09 0.89 ± 0.13 -0.66 ± 0.06
IMOST 0.50 ± 0.26 -0.46 ± 0.08 1.27 ± 0.07 -0.35 ± 0.06
WVN 0.13 ± 0.08 -0.57 ± 0.07 1.06 ± 0.01 -0.44 ± 0.07
LwF 0.19 ± 0.12 -0.55 ± 0.07 1.03 ± 0.11 -0.57 ± 0.06
NGR 0.82 ± 0.34 -0.49 ± 0.06 1.20 ± 0.21 -0.43 ± 0.02
Proposed 0.71 ± 0.29 -0.25 ± 0.11 0.97 ± 0.30 -0.47 ± 0.05

TABLE III: FM statistics during continual learning (mean ± std).

FM, fk,j Training from D1 to Dj

Test k Method D1→D2 D1→D2→
D3

D1→· · ·→
D4

D1→· · ·→
D5

D1

CM 0.60 ± 0.29 0.57 ± 0.12 0.70 ± 0.20 0.76 ± 0.17
IMOST 0.73 ± 0.10 1.12 ± 0.12 1.33 ± 0.11 1.55 ± 0.24
WVN 1.53 ± 0.01 2.08 ± 0.03 1.95 ± 0.11 2.56 ± 0.03
LwF 1.60 ± 0.12 2.24 ± 0.23 2.06 ± 0.14 2.68 ± 0.16
NGR 0.80 ± 0.05 1.38 ± 0.08 1.42 ± 0.06 1.82 ± 0.21

Proposed 0.67 ± 0.05 1.11 ± 0.07 1.24 ± 0.08 1.45 ± 0.13

D2

CM – 0.12 ± 0.12 0.20 ± 0.14 0.22 ± 0.09
IMOST – 0.38 ± 0.25 0.67 ± 0.19 1.03 ± 0.51
WVN – 2.17 ± 0.32 2.28 ± 0.39 2.29 ± 0.19
LwF – 2.33 ± 0.34 2.26 ± 0.30 2.72 ± 0.18
NGR – 0.55 ± 0.15 0.68 ± 0.14 1.22 ± 0.37

Proposed – 0.38 ± 0.27 0.68 ± 0.18 0.98 ± 0.23

D3

CM – – 0.35 ± 0.17 0.49 ± 0.20
IMOST – – 1.24 ± 0.23 1.51 ± 0.22
WVN – – 3.07 ± 0.33 3.18 ± 0.25
LwF – – 2.85 ± 0.11 3.50 ± 0.45
NGR – – 1.39 ± 0.14 2.13 ± 0.19

Proposed – – 0.93 ± 0.21 1.49 ± 0.31

D4

CM – – – 0.17 ± 0.12
IMOST – – – 0.36 ± 0.15
WVN – – – 1.60 ± 0.21
LwF – – – 1.52 ± 0.17
NGR – – – 0.29 ± 0.11

Proposed – – – 0.25 ± 0.16

Apart from the quantitative findings, we qualitatively eval-
uate the traversability prediction model’s ability to retain
prior experience through navigation trials. Specifically, we
assess the performance of model T 5 in Environments 1 after
sequential training on Environments 1 through 5 (i.e., D1 →
· · · → D5). To probe the impact of uncertainty-aware navi-
gation under continual learning, the grass region in the park
(treated as an OoD area) was excluded from data collection,
while only the asphalt region (in-distribution) was traversed
during training. Figure 6 illustrates representative trajectories
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from three trials per method, and Table IV summarizes the
navigation results. Here, Goal reached denotes the number
of successful goal completions out of three trials, and OoD
avoidance indicates the number of trials in which the robot
successfully avoided entering the grass region. The WVN
method fails to reach the goal in one trial, reflecting degraded
predictions due to forgetting. Other baselines, except CM and
the proposed method, also fail to retain prior experience and
incorrectly estimate uncertainty in the OoD region, resulting in
poor avoidance performance. In contrast, the proposed method
demonstrates stronger experience retention, reliably reaching
the goal while avoiding OoD areas. Despite being trained
without access to past data, it performs comparably to the CM
method. These results demonstrate that our method effectively
retains prior experience, enabling reliable navigation under
continual learning scenarios.

Fig. 6: Navigation results in Environment 1 using the traversability prediction
model T 5, with the paths of each method overlaid on the field images.

TABLE IV: Navigation results across 3 trials per method. Values indicate the
number of successful trials.

Metric
Method CM IMOST WVN LwF NGR Proposed

Goal reached 3 3 2 3 3 3
OoD avoidance 3 0 0 0 1 3

VI. CONCLUSIONS

This paper presents a novel continual learning framework
for traversability prediction in unstructured environments, ad-
dressing the challenges of adaptation and catastrophic forget-
ting without requiring explicit storage of past data. The core
contribution is an uncertainty-aware adaptation strategy that
selectively updates both the traversability prediction model and
the generative experience recall model based on uncertainty
estimates of recalled experiences. Real-world experiments
with a skid-steering robot validate the effectiveness of the
proposed method, demonstrating improved experience reten-
tion and reliable navigation performance. Future work will
investigate more generalizable learning strategies that leverage
prior knowledge, such as physics-informed foundation models,
for traversability prediction.
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